Principally g-radical Supplemented Modules
DOI:
https://doi.org/10.29304/jqcm.2023.15.1.1145Keywords:
: g-small submodules, g-supplemented module, g-radical supplemented modules, P-g-radical supplemented.Abstract
In this article we present a proper generalization of the class of g-radical supplemented modules. This class termed by P-g-radical supplemented. We determined it is structure. Several of these modules' characterizations, properties, and instances are described.
Downloads
Download data is not yet available.
References
[1] A. Tuganbaev, Semidistributive modules and rings, Kluwer Academics Publishers, Dordrecht, (1998).
[2] F. Kasch, Modules and rings module, 1982.
[3] D.X. Zhou, and X.R. Zhang, small-essential submodule and morita duality, south-east Asian Bull. Math. 35(2011) pp. 1051-1062.
[4] B. Kosar, C. Nebiyev, and N. Sokmez, G-supplemented modules, Ukrainian mathematical journal 67(6)(2015)pp. 861-864.
[5] Kosar, B., Nebiyev, C., and Pekin, A., A generalization of g-supplemented modules, Miskolc Mathematical Notes, 20(1)(2019) pp. 345-352.
[6] A. C. Ozcan, A. Harmanci and P. F. Smith, Duo modules, Glasgow Math. J., 48(3) (2006), 533-545.
[7] Hadi I. M-A. and Aidi S. H., On e-small submodules, Ibn Al-Haitham Jour. for Pure & Appl. Sci., 28(3) (2015), 214-222.
[8] E. Büyükaşik and Y. Demirci, Weakly distributive modules. Applications to supplement submodules, Proc. Indian Acad. Sci.(Math. Sci.), Vol. 120, 525-534, 2010.
[9] L. V. Thuyet and P. H. Tin, Some characterizations of modules via essentially small submodules, Kyungpook Math. J. 56, (2016) pp. 1069-1083.
[2] F. Kasch, Modules and rings module, 1982.
[3] D.X. Zhou, and X.R. Zhang, small-essential submodule and morita duality, south-east Asian Bull. Math. 35(2011) pp. 1051-1062.
[4] B. Kosar, C. Nebiyev, and N. Sokmez, G-supplemented modules, Ukrainian mathematical journal 67(6)(2015)pp. 861-864.
[5] Kosar, B., Nebiyev, C., and Pekin, A., A generalization of g-supplemented modules, Miskolc Mathematical Notes, 20(1)(2019) pp. 345-352.
[6] A. C. Ozcan, A. Harmanci and P. F. Smith, Duo modules, Glasgow Math. J., 48(3) (2006), 533-545.
[7] Hadi I. M-A. and Aidi S. H., On e-small submodules, Ibn Al-Haitham Jour. for Pure & Appl. Sci., 28(3) (2015), 214-222.
[8] E. Büyükaşik and Y. Demirci, Weakly distributive modules. Applications to supplement submodules, Proc. Indian Acad. Sci.(Math. Sci.), Vol. 120, 525-534, 2010.
[9] L. V. Thuyet and P. H. Tin, Some characterizations of modules via essentially small submodules, Kyungpook Math. J. 56, (2016) pp. 1069-1083.
Downloads
Published
2023-02-17
How to Cite
Mirza, R. N., & Ghawi, T. Y. (2023). Principally g-radical Supplemented Modules. Journal of Al-Qadisiyah for Computer Science and Mathematics, 15(1), Math Page 7–13. https://doi.org/10.29304/jqcm.2023.15.1.1145
Issue
Section
Math Articles