Some connections about sgrs ^⊕-modules

Authors

  • Narjis Mujtabah Kamil Al-Samawah Education Directorate, Iraqi Ministry of Education, Iraq
  • Thaar Younis Ghawi Department of Mathematics, College of Education, University of Al-Qadisiyah, Iraq

DOI:

https://doi.org/10.29304/jqcm.2022.14.1.907

Keywords:

g-small submdules, ⨁-g-supplemented modules, sgrs^⊕-modules

Abstract

In this article, we introduced and investigated some relations between the concept of strongly generalized -radical supplemented module (for short, -module) and many other types of modules.

Downloads

Download data is not yet available.

References

[1] M. Alkan and A. Harmanci, On summand sum and summand intersection property of modules, Turk. J. Math. 26(2002), 131-147.
[2] E. Buyükasik and E. Türkmen, Strongly radical supplemented modules, Ukrainian Mathematical Journal,63(8)(2012), 1306-1313.
[3] V. Camillo, Distributive modules, J. of Algebra, 36(1975), 16-25.
[4] S. Das and A. M. Buhphang, Strongly generalized radical supplemented module, General Algebra and Applications,40(2020),63-74.
[5] T. Y. Ghawi, Some Generalizations of g-lifting Modules, Quasigroups and Related Systems, 2022, unpublished.
[6] K. R. Goodearl, Ring theory, Nonsingular Rings and Modules, Dekker, Newyork, (1976).
[7] Hadi I. M-A and Aidi S.H., e-Hollow modules, Int. J. of Advanced Sci. and Technical Research, issue 5, 3(2015), 453-461.
[8] N. M. Kamil and T. Y. Ghawi, Strongly generalized ⨁-radical supplemented modules, Journal of Discrete Mathematical Sciences
& Cryptography, 2022, unpublished.
[9] F. Kasch, Modules and rings, Academic press, New York, (1982).
[10] B. Koşar, C. Nebiyev and N. Sӧkmez, G-supplemented modules, Ukrainian Mathematical Journal, 67 (2015), 861-864.
[11] M. M. Obaid and T. Y. Ghawi, Principally g-supplemented modules, 9th International Scientific Conference of Iraqi Al-
Khwarizmi Society, 2022, unpublished.
[12] A. C. Ozcan, A. Harmanci, Duo modules, Glasgow Math. J., 48 (2006), 533-545.
[13] T. C. Quynh and P. H. Tin, Some properties of e-supplemented and e-lifting modules, Vietnam J. Math., 41 (3) (2013), 303-312.
[14] L. V. Thuyet and P. H. Tin, Some characterization of modules via Essential small submodules, Kyungpook Math. J., 56(2016),
1069-1083.
[15] B. N. Türkmen and A. Pancar, Generalizations of ⨁-supplemented modules, Ukrainian Mathematical Journal, 65(4)(2013), 612-
622.
[16] R. Wisbauer, Foundations of module and ring theory, University of Dusseldorf, (1991).
[17] R. Wisbauer, Modules and algebras: bimodule structure and group actions on algebras, Pitman Monographs and Surveys in Pure and Applied
Mathematics, 81, Longman, Harlow, MR1396313 (97i:16002), (1996).
[18] D.X. Zhou and X.R. Zhang, Small-Essential submodules and Morita Duality, Southeast Asian Bulletin of Mathematics, 35(2011),
1051-1062.

Downloads

Published

2022-04-22

How to Cite

Kamil, N. M., & Ghawi, T. Y. (2022). Some connections about sgrs ^⊕-modules. Journal of Al-Qadisiyah for Computer Science and Mathematics, 14(1), Math Page 33– 38. https://doi.org/10.29304/jqcm.2022.14.1.907

Issue

Section

Math Articles