Techniques and Applications for Deep Learning: A Review

Authors

  • Jenan A. Alhijaj Department of Computer Science, College of Computer Science and Information Technology, University of Basarh, Basrah, Iraq,
  • Raidah S. Khudeyer Department of information systems, College of Computer Science and Information Technology, University of Bsarh, Basrah, Iraq

DOI:

https://doi.org/10.29304/jqcm.2023.15.2.1236

Keywords:

Deep learning (DL), Convolutional Neural Networks, Transfer Learning (TL), Long Short Term Memory (LSTM), Generative Adversarial Networks, Deep Learning Applications

Abstract

Deep learning is a branch of machine learning that focuses on the development and refinement of complex neural networks for data analysis, prediction, and decision-making. Deep learning models use numerous layers of artificial neurons to automatically extract important features from raw data, making them superior at many tasks to typical machine learning models. Deep learning models' success in these fields has enhanced state-of-the-art performance and created new research and application prospects. Deep learning has been popular due to its capacity to tackle complicated issues in computer vision, natural language processing, speech recognition, and decision-making. In this study, we discuss deep learning techniques and applications, including recurrent neural networks, long short-term memory, convolutional neural networks, generative adversarial networks, and autoencoders. We also demonstrate deep learning's use in various fields. Deep learning has transformed artificial intelligence by enabling computers to learn from enormous datasets and accomplish complex tasks. As a result, scientists and engineers in fields as diverse as medicine, farming, manufacturing, and transportation have increased their focus on developing deep-learning methods and software. Current research trends and potential future paths in deep learning are also highlighted. 

Downloads

Download data is not yet available.

References

[1] M. M. Mijwil, D. Salim Mutar, E. Sh Mahmood, M. Gök, S. Uzun, and R. Doshi, “Deep Learning Applications and Their Worth: A Short Review,” 2022. [Online]. Available: www.ajouronline.com
[2] J. Schmidhuber, “Deep Learning in Neural Networks: An Overview,” International Conference on Modeling, Simulation and Optimization Technologies and Applications (MSOTA2016), vol. 61, p. pp.85-117, Apr. 2015, doi: 10.1016/j.neunet.2014.09.003.
[3] L. Alzubaidi et al., “Review of deep learning: concepts, CNN architectures, challenges, applications, future directions,” J Big Data, vol. 8, no. 1, Dec. 2021, doi: 10.1186/s40537-021-00444-8.
[4] S. Dong, P. Wang, and K. Abbas, “A survey on deep learning and its applications,” Computer Science Review, vol. 40. Elsevier Ireland Ltd, May 01, 2021. doi: 10.1016/j.cosrev.2021.100379.
[5] X. Liu et al., “Privacy and Security Issues in Deep Learning: A Survey,” IEEE Access, vol. 9. Institute of Electrical and Electronics Engineers Inc., pp. 4566–4593, 2021. doi: 10.1109/ACCESS.2020.3045078.
[6] A. Mathew, P. Amudha, and S. Sivakumari, “Deep learning techniques: an overview,” in Advances in Intelligent Systems and Computing, Springer, 2021, pp. 599–608. doi: 10.1007/978-981-15-3383-9_54.
[7] S. A, “Studying the Effect of Activation Function on Classification Accuracy Using Deep Artificial Neural Networks,” Journal of Remote Sensing & GIS, vol. 06, no. 03, 2017, doi: 10.4172/2469-4134.1000203.
[8] H. Gu, Y. Wang, S. Hong, and G. Gui, “Blind channel identification aided generalized automatic modulation recognition based on deep learning,” IEEE Access, vol. 7, pp. 110722–110729, 2019, doi: 10.1109/ACCESS.2019.2934354.
[9] S. Tulasi Krishna, “Deep Learning and Transfer Learning Approaches for Image Classification.” [Online]. Available: https://www.researchgate.net/publication/333666150
[10] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, “A survey of the recent architectures of deep convolutional neural networks,” Artif Intell Rev, vol. 53, no. 8, pp. 5455–5516, Dec. 2020, doi: 10.1007/s10462-020-09825-6.
[11] S. A. Sanchez, H. J. Romero, and A. D. Morales, “A review: Comparison of performance metrics of pretrained models for object detection using the TensorFlow framework,” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, Jun. 2020. doi: 10.1088/1757-899X/844/1/012024.
[12] M. Tan and Q. v Le, “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks.”
[13] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553. Nature Publishing Group, pp. 436–444, May 27, 2015. doi: 10.1038/nature14539.
[14] A. Shrestha and A. Mahmood, “Review of deep learning algorithms and architectures,” IEEE Access, vol. 7. Institute of Electrical and Electronics Engineers Inc., pp. 53040–53065, 2019. doi: 10.1109/ACCESS.2019.2912200.
[15] S. S., J. I. Zong Chen, and S. Shakya, “Survey on Neural Network Architectures with Deep Learning,” Journal of Soft Computing Paradigm, vol. 2, no. 3, pp. 186–194, Jul. 2020, doi: 10.36548/jscp.2020.3.007.
[16] V. G. Dhanya et al., “Deep learning based computer vision approaches for smart agricultural applications,” Artificial Intelligence in Agriculture, vol. 6. KeAi Communications Co., pp. 211–229, Jan. 01, 2022. doi: 10.1016/j.aiia.2022.09.007.
[17] A. Dash, J. Ye, and G. Wang, “A review of Generative Adversarial Networks (GANs) and its applications in a wide variety of disciplines -- From Medical to Remote Sensing,” Oct. 2021, [Online]. Available: http://arxiv.org/abs/2110.01442
[18] S. Sakib, A. 1#, A. Jawad, K. 2@, and H. Ahmed, “An Overview of Convolutional Neural Network: Its Architecture and Applications,” 2019, doi: 10.20944/preprints201811.0546.v4.
[19] L. F. Simões Hoffmann, F. C. Parquet Bizarria, and J. W. Parquet Bizarria, “Detection of liner surface defects in solid rocket motors using multilayer perceptron neural networks,” Polym Test, vol. 88, Aug. 2020, doi: 10.1016/j.polymertesting.2020.106559.
[20] D. Wu, X. Ma, and D. L. Olson, “Financial distress prediction using integrated Z-score and multilayer perceptron neural networks,” Decis Support Syst, vol. 159, Aug. 2022, doi: 10.1016/j.dss.2022.113814.
[21] P. Hunasigi, S. Jedhe, M. Mane, and V. Patil-Shinde, “Multilayer perceptron neural network based models for prediction of the rainfall and reference crop evapotranspiration for sub-humid climate of Dapoli, Ratnagiri District, India,” Acta Ecologica Sinica, Feb. 2022, doi: 10.1016/j.chnaes.2022.09.004.
[22] A. Olawoyin and Y. Chen, “Predicting the future with artificial neural network,” in Procedia Computer Science, Elsevier B.V., 2018, pp. 383–392. doi: 10.1016/j.procs.2018.10.300.
[23] L. Sarangi, M. N. Mohanty, and S. Pattanayak, “Design of MLP Based Model for Analysis of Patient Suffering from Influenza,” in Procedia Computer Science, Elsevier B.V., 2016, pp. 396–403. doi: 10.1016/j.procs.2016.07.396.
[24] X. Wei, N. Zou, L. Zeng, and Z. Pei, “PolyJet 3D printing: Predicting color by multilayer perceptron neural network,” Annals of 3D Printed Medicine, vol. 5, p. 100049, Mar. 2022, doi: 10.1016/j.stlm.2022.100049.
[25] S. Kolagati, T. Priyadharshini, and V. Mary Anita Rajam, “Exposing deepfakes using a deep multilayer perceptron – convolutional neural network model,” International Journal of Information Management Data Insights, vol. 2, no. 1, Apr. 2022, doi: 10.1016/j.jjimei.2021.100054.
[26] R. F. Brenes, A. Johannssen, and N. Chukhrova, “An intelligent bankruptcy prediction model using a multilayer perceptron,” Intelligent Systems with Applications, vol. 16, Nov. 2022, doi: 10.1016/j.iswa.2022.200136.
[27] E. Avuçlu and F. Başçiftçi, “New approaches to determine age and gender in image processing techniques using multilayer perceptron neural network,” Applied Soft Computing Journal, vol. 70, pp. 157–168, Sep. 2018, doi: 10.1016/j.asoc.2018.05.033.
[28] W. Zhou and J. Jia, “A learning framework for shape retrieval based on multilayer perceptrons,” Pattern Recognit Lett, vol. 117, pp. 119–130, Jan. 2019, doi: 10.1016/j.patrec.2018.09.005.
[29] O. R. Vincent, A. S. Makinde, and A. T. Akinwale, “A cognitive buying decision-making process in B2B e-commerce using Analytic-MLP,” Electron Commer Res Appl, vol. 25, pp. 59–69, Sep. 2017, doi: 10.1016/j.elerap.2017.08.002.
[30] P. Chawla, S. Hazarika, and H. W. Shen, “Token-wise sentiment decomposition for ConvNet: Visualizing a sentiment classifier,” Visual Informatics, vol. 4, no. 2, pp. 132–141, Jun. 2020, doi: 10.1016/j.visinf.2020.04.006.
[31] S. Thakur and A. Kumar, “X-ray and CT-scan-based automated detection and classification of covid-19 using convolutional neural networks (CNN),” Biomed Signal Process Control, vol. 69, Aug. 2021, doi: 10.1016/j.bspc.2021.102920.
[32] R. Real, J. Gopsill, D. Jones, C. Snider, and B. Hicks, “Distinguishing artefacts: Evaluating the saturation point of convolutional neural networks,” in Procedia CIRP, Elsevier B.V., 2021, pp. 385–390. doi: 10.1016/j.procir.2021.05.089.
[33] A. J. Garcia, A. Aouto, J. M. Lee, and D. S. Kim, “CNN-32DC: An improved radar-based drone recognition system based on Convolutional Neural Network,” ICT Express, Dec. 2022, doi: 10.1016/j.icte.2022.04.012.
[34] M. Uzzol Hossain, M. Ataur Rahman, M. Manowarul Islam, A. Akhter, M. Ashraf Uddin, and B. Kumar Paul, “Automatic driver distraction detection using deep convolutional neural networks,” Intelligent Systems with Applications, vol. 14, p. 75, 2022, doi: 10.1016/j.iswa.2022.20.
[35] K. Nogueira, O. A. B. Penatti, and J. A. dos Santos, “Towards Better Exploiting Convolutional Neural Networks for Remote Sensing Scene Classification,” Feb. 2016, doi: 10.1016/j.patcog.2016.07.001.
[36] S. Niyas, S. J. Pawan, M. A. Kumar, and J. Rajan, “Medical Image Segmentation with 3D Convolutional Neural Networks: A Survey,” Aug. 2021, [Online]. Available: http://arxiv.org/abs/2108.08467
[37] R. Chauhan, H. Kaur, and B. Alankar, “Air Quality Forecast using Convolutional Neural Network for Sustainable Development in Urban Environments,” Sustain Cities Soc, vol. 75, Dec. 2021, doi: 10.1016/j.scs.2021.103239.
[38] B. Thyreau and Y. Taki, “Learning a cortical parcellation of the brain robust to the MRI segmentation with convolutional neural networks,” Med Image Anal, vol. 61, Apr. 2020, doi: 10.1016/j.media.2020.101639.
[39] N. Saeed, N. King, Z. Said, and M. A. Omar, “Automatic defects detection in CFRP thermograms, using convolutional neural networks and transfer learning,” Infrared Phys Technol, vol. 102, Nov. 2019, doi: 10.1016/j.infrared.2019.103048.
[40] M. Gour and S. Jain, “Uncertainty-aware convolutional neural network for COVID-19 X-ray images classification,” Comput Biol Med, vol. 140, Jan. 2022, doi: 10.1016/j.compbiomed.2021.105047.
[41] I. Papoutsis, N.-I. Bountos, A. Zavras, D. Michail, and C. Tryfonopoulos, “Efficient deep learning models for land cover image classification,” Nov. 2021, doi: 10.1016/j.isprsjprs.2022.11.012.
[42] N. M. Al-Moosawi and R. S. Khudeyer, “ResNet-34/DR: A Residual Convolutional Neural Network for the Diagnosis of Diabetic Retinopathy,” Informatica (Slovenia), vol. 45, no. 7, pp. 115–124, 2021, doi: 10.31449/inf.v45i7.3774.
[43] K. O. Mohammed Aarif and S. Poruran, “OCR-Nets: Variants of Pre-trained CNN for Urdu Handwritten Character Recognition via Transfer Learning,” in Procedia Computer Science, Elsevier B.V., 2020, pp. 2294–2301. doi: 10.1016/j.procs.2020.04.248.
[44] T. ben Abdallah, I. Elleuch, and R. Guermazi, “Student behavior recognition in classroom using deep transfer learning with VGG-16,” in Procedia Computer Science, Elsevier B.V., 2021, pp. 951–960. doi: 10.1016/j.procs.2021.08.098.
[45] K. Alhanaee, M. Alhammadi, N. Almenhali, and M. Shatnawi, “Face recognition smart attendance system using deep transfer learning,” in Procedia Computer Science, Elsevier B.V., 2021, pp. 4093–4102. doi: 10.1016/j.procs.2021.09.184.
[46] M. M. Islam, M. R. Uddin, M. N. AKhtar, and K. M. R. Alam, “Recognizing multiclass Static Sign Language words for deaf and dumb people of Bangladesh based on transfer learning techniques,” Inform Med Unlocked, vol. 33, Jan. 2022, doi: 10.1016/j.imu.2022.101077.
[47] M. de A. Carvalho et al., “A deep learning-based mobile application for tree species mapping in RGB images,” International Journal of Applied Earth Observation and Geoinformation, vol. 114, Nov. 2022, doi: 10.1016/j.jag.2022.103045.
[48] K. Rangasamy, M. A. As’ari, N. A. Rahmad, and N. F. Ghazali, “Hockey activity recognition using pre-trained deep learning model,” ICT Express, vol. 6, no. 3, pp. 170–174, Sep. 2020, doi: 10.1016/j.icte.2020.04.013.
[49] A. S. Paymode and V. B. Malode, “Transfer Learning for Multi-Crop Leaf Disease Image Classification using Convolutional Neural Network VGG,” Artificial Intelligence in Agriculture, vol. 6, pp. 23–33, Jan. 2022, doi: 10.1016/j.aiia.2021.12.002.
[50] M. Taqiyuddin, Y. E. Windarto, W. A. Syafei, I. P. Windasari, and A. B. Prasetijo, “Accuracy Improvement of CNN MobileNet-V1 and Residual Network 50 Layers Models using Adam setting for Car Type Classification,” in 2022 International Symposium on Electronics and Smart Devices (ISESD), IEEE, Nov. 2022, pp. 1–7. doi: 10.1109/ISESD56103.2022.9980771.
[51] S. M. Kasongo, “A deep learning technique for intrusion detection system using a Recurrent Neural Networks based framework,” Comput Commun, vol. 199, pp. 113–125, Feb. 2023, doi: 10.1016/j.comcom.2022.12.010.
[52] A. Onan, “Bidirectional convolutional recurrent neural network architecture with group-wise enhancement mechanism for text sentiment classification,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 5, pp. 2098–2117, May 2022, doi: 10.1016/j.jksuci.2022.02.025.
[53] M. Villegas et al., “Predicting the evolution of COVID-19 mortality risk: A Recurrent Neural Network approach,” Computer Methods and Programs in Biomedicine Update, vol. 3, p. 100089, 2023, doi: 10.1016/j.cmpbup.2022.100089.
[54] X. Wei, L. Zhang, H. Q. Yang, L. Zhang, and Y. P. Yao, “Machine learning for pore-water pressure time-series prediction: Application of recurrent neural networks,” Geoscience Frontiers, vol. 12, no. 1, pp. 453–467, Jan. 2021, doi: 10.1016/j.gsf.2020.04.011.
[55] L. Falaschetti, M. Alessandrini, G. Biagetti, P. Crippa, and C. Turchetti, “ECG-Based Arrhythmia Classification using Recurrent Neural Networks in Embedded Systems,” Procedia Comput Sci, vol. 207, pp. 3479–3487, 2022, doi: 10.1016/j.procs.2022.09.406.
[56] A. Dupuis, C. Dadouchi, and B. Agard, “Methodology for multi-temporal prediction of crop rotations using recurrent neural networks,” Smart Agricultural Technology, vol. 4, Aug. 2023, doi: 10.1016/j.atech.2022.100152.
[57] A. F. Agarap, “Statistical Analysis on E-Commerce Reviews, with Sentiment Classification using Bidirectional Recurrent Neural Network (RNN),” May 2018, [Online]. Available: http://arxiv.org/abs/1805.03687
[58] A. , Nanduri and L. & Sherry, “Anomaly detection in aircraft data using Recurrent Neural Networks (RNN),” Integrated Communications Navigation and Surveillance (ICNS), vol. 2016, April, pp. 5C2-1, 2016.
[59] S. I. Popoola, B. Adebisi, M. Hammoudeh, H. Gacanin, and G. Gui, “Stacked recurrent neural network for botnet detection in smart homes,” Computers and Electrical Engineering, vol. 92, Jun. 2021, doi: 10.1016/j.compeleceng.2021.107039.
[60] T. Kong, W. Fang, P. E. D. Love, H. Luo, S. Xu, and H. Li, “Computer vision and long short-term memory: Learning to predict unsafe behaviour in construction,” Advanced Engineering Informatics, vol. 50, Oct. 2021, doi: 10.1016/j.aei.2021.101400.
[61] A. K. Sahu, S. Sharma, M. Tanveer, and R. Raja, “Internet of Things attack detection using hybrid Deep Learning Model,” Comput Commun, vol. 176, pp. 146–154, Aug. 2021, doi: 10.1016/j.comcom.2021.05.024.
[62] A. G. Salman, Y. Heryadi, E. Abdurahman, and W. Suparta, “Single Layer & Multi-layer Long Short-Term Memory (LSTM) Model with Intermediate Variables for Weather Forecasting,” in Procedia Computer Science, Elsevier B.V., 2018, pp. 89–98. doi: 10.1016/j.procs.2018.08.153.
[63] A. Docheshmeh Gorgij, G. Askari, A. A. Taghipour, M. Jami, and M. Mirfardi, “Spatiotemporal Forecasting of the Groundwater Quality for Irrigation Purposes, Using Deep Learning Method: Long Short-Term Memory (LSTM),” Agric Water Manag, vol. 277, p. 108088, Mar. 2023, doi: 10.1016/j.agwat.2022.108088.
[64] B. A. Sunjaya, S. D. Permai, and A. A. S. Gunawan, “Forecasting of Covid-19 positive cases in Indonesia using long short-term memory (LSTM),” Procedia Comput Sci, vol. 216, pp. 177–185, 2023, doi: 10.1016/j.procs.2022.12.125.
[65] A. M. A. Haimed, T. Saba, A. Albasha, A. Rehman, and M. Kolivand, “Viral reverse engineering using Artificial Intelligence and big data COVID-19 infection with Long Short-term Memory (LSTM),” Environ Technol Innov, vol. 22, May 2021, doi: 10.1016/j.eti.2021.101531.
[66] D. Joseph, T. Gallege, E. T. Bekar, C. Dudas, and A. Skoogh, “A Predictive Maintenance Application for A Robot Cell using LSTM Model,” IFAC-PapersOnLine, vol. 55, no. 19, pp. 115–120, 2022, doi: 10.1016/j.ifacol.2022.09.193.
[67] G. I. Drewil and R. J. Al-Bahadili, “Air pollution prediction using LSTM deep learning and metaheuristics algorithms,” Measurement: Sensors, vol. 24, p. 100546, Dec. 2022, doi: 10.1016/j.measen.2022.100546.
[68] X. H. Le, H. V. Ho, G. Lee, and S. Jung, “Application of Long Short-Term Memory (LSTM) neural network for flood forecasting,” Water (Switzerland), vol. 11, no. 7, 2019, doi: 10.3390/w11071387.
[69] R. Vinayakumar, K. P. Soman, P. Poornachandran, and S. Sachin Kumar, “Detecting Android malware using Long Short-term Memory (LSTM),” in Journal of Intelligent and Fuzzy Systems, IOS Press, 2018, pp. 1277–1288. doi: 10.3233/JIFS-169424.
[70] Li D. & and J. Qian, “Text sentiment analysis based on long short-term memory,” International Conference on Computer Communication and the Internet (ICCCI), vol. 2016, October, pp. 471–475, 2016.
[71] S. Zaghbani, N. Boujneh, and M. S. Bouhlel, “Age estimation using deep learning,” Computers and Electrical Engineering, vol. 68, pp. 337–347, May 2018, doi: 10.1016/j.compeleceng.2018.04.012.
[72] J. Qian, Z. Song, Y. Yao, Z. Zhu, and X. Zhang, “A review on autoencoder based representation learning for fault detection and diagnosis in industrial processes,” Chemometrics and Intelligent Laboratory Systems, vol. 231, p. 104711, Dec. 2022, doi: 10.1016/j.chemolab.2022.104711.
[73] S. Demir, K. Mincev, K. Kok, and N. G. Paterakis, “Data augmentation for time series regression: Applying transformations, autoencoders and adversarial networks to electricity price forecasting,” Appl Energy, vol. 304, Dec. 2021, doi: 10.1016/j.apenergy.2021.117695.
[74] D. Wu, X. Wang, and S. Wu, “A hybrid framework based on extreme learning machine, discrete wavelet transform, and autoencoder with feature penalty for stock prediction,” Expert Syst Appl, vol. 207, Nov. 2022, doi: 10.1016/j.eswa.2022.118006.
[75] P. J. Pereira et al., “Using deep autoencoders for in-vehicle audio anomaly detection,” in Procedia Computer Science, Elsevier B.V., 2021, pp. 298–307. doi: 10.1016/j.procs.2021.08.031.
[76] L. Chen, A. J. Saykin, B. Yao, and F. Zhao, “Multi-task deep autoencoder to predict Alzheimer’s disease progression using temporal DNA methylation data in peripheral blood,” Comput Struct Biotechnol J, vol. 20, pp. 5761–5774, Jan. 2022, doi: 10.1016/j.csbj.2022.10.016.
[77] T. N. Hoang and D. Kim, “Detecting in-vehicle intrusion via semi-supervised learning-based convolutional adversarial autoencoders,” Vehicular Communications, vol. 38, Dec. 2022, doi: 10.1016/j.vehcom.2022.100520.
[78] Y. Choi and S. Yoon, “Autoencoder-driven fault detection and diagnosis in building automation systems: Residual-based and latent space-based approaches,” Build Environ, vol. 203, Oct. 2021, doi: 10.1016/j.buildenv.2021.108066.
[79] Z. Ye and J. Yu, “Health condition monitoring of machines based on long short-term memory convolutional autoencoder,” Appl Soft Comput, vol. 107, Aug. 2021, doi: 10.1016/j.asoc.2021.107379.
[80] Z. Qin, Q. Zeng, Y. Zong, and F. Xu, “Image inpainting based on deep learning: A review,” Displays, vol. 69, Sep. 2021, doi: 10.1016/j.displa.2021.102028.
[81] F. Zhu, C. Wang, B. Zhu, C. Sun, and C. Qi, “An improved generative adversarial networks for remote sensing image super-resolution reconstruction via multi-scale residual block,” Egyptian Journal of Remote Sensing and Space Science, vol. 26, no. 1, pp. 151–160, Feb. 2023, doi: 10.1016/j.ejrs.2022.12.008.
[82] S. Motamed, P. Rogalla, and F. Khalvati, “Data augmentation using Generative Adversarial Networks (GANs) for GAN-based detection of Pneumonia and COVID-19 in chest X-ray images,” Inform Med Unlocked, vol. 27, Jan. 2021, doi: 10.1016/j.imu.2021.100779.
[83] Ambika, Virupakshappa, and S. Veerashetty, “Secure communication over wireless sensor network using image steganography with generative adversarial networks,” Measurement: Sensors, vol. 24, Dec. 2022, doi: 10.1016/j.measen.2022.100452.
[84] Z. Li, H. Liu, C. Zhang, and G. Fu, “Generative adversarial networks for detecting contamination events in water distribution systems using multi-parameter, multi-site water quality monitoring,” Environmental Science and Ecotechnology, vol. 14, Apr. 2023, doi: 10.1016/j.ese.2022.100231.
[85] B. Yilmaz and R. Korn, “Synthetic demand data generation for individual electricity consumers: Generative Adversarial Networks (GANs),” Energy and AI, vol. 9, Aug. 2022, doi: 10.1016/j.egyai.2022.100161.
[86] Z. Chen, Z. Zeng, H. Shen, X. Zheng, P. Dai, and P. Ouyang, “DN-GAN: Denoising generative adversarial networks for speckle noise reduction in optical coherence tomography images,” Biomed Signal Process Control, vol. 55, Jan. 2020, doi: 10.1016/j.bspc.2019.101632.
[87] J. Jiang, G. Li, S. Wu, H. Zhang, and Y. Nie, “BPA-GAN: Human motion transfer using body-part-aware generative adversarial networks,” Graph Models, vol. 115, May 2021, doi: 10.1016/j.gmod.2021.101107.
[88] Y. Xiao, W. Lei, L. Lu, X. Chang, X. Zheng, and X. Chen, “CS-GAN: Cross-Structure Generative Adversarial Networks for Chinese calligraphy translation[Formula presented],” Knowl Based Syst, vol. 229, Oct. 2021, doi: 10.1016/j.knosys.2021.107334.
[89] D. M. Vo, D. M. Nguyen, T. P. Le, and S. W. Lee, “HI-GAN: A hierarchical generative adversarial network for blind denoising of real photographs,” Inf Sci (N Y), vol. 570, pp. 225–240, Sep. 2021, doi: 10.1016/j.ins.2021.04.045.
[90] A. R. Pathak, M. Pandey, and S. Rautaray, “Application of Deep Learning for Object Detection,” in Procedia Computer Science, Elsevier B.V., 2018, pp. 1706–1717. doi: 10.1016/j.procs.2018.05.144.
[91] A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-Martinez, P. Martinez-Gonzalez, and J. Garcia-Rodriguez, “A survey on deep learning techniques for image and video semantic segmentation,” Applied Soft Computing Journal, vol. 70. Elsevier Ltd, pp. 41–65, Sep. 01, 2018. doi: 10.1016/j.asoc.2018.05.018.
[92] S. W. Lee et al., “Towards secure intrusion detection systems using deep learning techniques: Comprehensive analysis and review,” Journal of Network and Computer Applications, vol. 187. Academic Press, Aug. 01, 2021. doi: 10.1016/j.jnca.2021.103111.
[93] W. Han, R. Feng, L. Wang, and Y. Cheng, “A semi-supervised generative framework with deep learning features for high-resolution remote sensing image scene classification,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 145, pp. 23–43, Nov. 2018, doi: 10.1016/j.isprsjprs.2017.11.004.
[94] A. S. Gaafar, J. M. Dahr, and A. K. Hamoud, “Comparative Analysis of Performance of Deep Learning Classification Approach based on LSTM-RNN for Textual and Image Datasets,” Informatica (Slovenia), vol. 46, no. 5, pp. 21–28, 2022, doi: 10.31449/inf.v46i5.3872.
[95] N. H. Ajam and Z. S. Jumaa, “Convolutional neural network in the classification of COVID-19,” Original Research, vol. 10, no. 2, pp. 241–250, 2022.
[96] W. L. Alyoubi, W. M. Shalash, and M. F. Abulkhair, “Diabetic retinopathy detection through deep learning techniques: A review,” Informatics in Medicine Unlocked, vol. 20. Elsevier Ltd, Jan. 01, 2020. doi: 10.1016/j.imu.2020.100377.
[97] H. Jindal, N. Sardana, and R. Mehta, “Analyzing Performance of Deep Learning Techniques for Web Navigation Prediction,” in Procedia Computer Science, Elsevier B.V., 2020, pp. 1739–1748. doi: 10.1016/j.procs.2020.03.384.
[98] I. Singh, G. Goyal, and A. Chandel, “AlexNet architecture based convolutional neural network for toxic comments classification,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 9, pp. 7547–7558, Oct. 2022, doi: 10.1016/j.jksuci.2022.06.007.
[99] C. Chen, Y. Liu, M. Kumar, and J. Qin, “Energy Consumption Modelling Using Deep Learning Technique - A Case Study of EAF,” in Procedia CIRP, Elsevier B.V., 2018, pp. 1063–1068. doi: 10.1016/j.procir.2018.03.095.
[100] H. Hakim, Z. Alhakeem, and S. Al-Darraji, “Goal location prediction based on deep learning using rgb-d camera,” Bulletin of Electrical Engineering and Informatics, vol. 10, no. 5, pp. 2811–2820, Oct. 2021, doi: 10.11591/eei.v10i5.3170.
[101] H. Jindal, N. Sardana, and R. Mehta, “Analyzing Performance of Deep Learning Techniques for Web Navigation Prediction,” in Procedia Computer Science, Elsevier B.V., 2020, pp. 1739–1748. doi: 10.1016/j.procs.2020.03.384.
[102] I. AbdulNabi and Q. Yaseen, “Spam email detection using deep learning techniques,” in Procedia Computer Science, Elsevier B.V., 2021, pp. 853–858. doi: 10.1016/j.procs.2021.03.107.
[103] L. S. Nair, M. K. Shivani, and S. Jo Cheriyan, “Enabling Remote School Education using Knowledge Graphs and Deep Learning Techniques,” Procedia Comput Sci, vol. 215, pp. 618–625, 2022, doi: 10.1016/j.procs.2022.12.064.
[104] M. , Buyukyilmaz and A. O. & Cibikdiken, “Voice gender recognition using deep learning,” Methods Ecol Evol, vol. 2016, December, no. 2, pp. 409–411, Feb. 2016, doi: 10.1111/2041-210X.12624.
[105] I. Z. , Mukti and D. & Biswas, “Transfer learning based plant diseases detection using ResNet50,” International conference on electrical information and communication technology (EICT), vol. 2019, December, p. (pp. 1-6), 2019.
[106] M. Ahmed, N. Afreen, M. Ahmed, M. Sameer, and J. Ahamed, “An inception V3 approach for malware classification using machine learning and transfer learning,” International Journal of Intelligent Networks, vol. 4, pp. 11–18, Jan. 2023, doi: 10.1016/j.ijin.2022.11.005.
[107] J. Guérin, S. Thiery, E. Nyiri, O. Gibaru, and B. Boots, “Combining pretrained CNN feature extractors to enhance clustering of complex natural images,” Neurocomputing, vol. 423, pp. 551–571, Jan. 2021, doi: 10.1016/j.neucom.2020.10.068.
[108] M. A. Benallal and M. S. Tayeb, “An image-based convolutional neural network system for road defects detection,” IAES International Journal of Artificial Intelligence, vol. 12, no. 2, pp. 577–584, Jun. 2023, doi: 10.11591/ijai.v12.i2.pp577-584.
[109] M. R. Sanzana, T. Maul, J. Y. Wong, M. O. M. Abdulrazic, and C. C. Yip, “Application of deep learning in facility management and maintenance for heating, ventilation, and air conditioning,” Automation in Construction, vol. 141. Elsevier B.V., Sep. 01, 2022. doi: 10.1016/j.autcon.2022.104445.
[110] A. Narayan and P. H. O’N Roe, “Learning Graph Dynamics using Deep Neural Networks,” Elsevier B.V., Jan. 2018, pp. 433–438. doi: 10.1016/j.ifacol.2018.03.074.

Downloads

Published

2023-09-24

How to Cite

Alhijaj, J. A., & Khudeyer, R. S. (2023). Techniques and Applications for Deep Learning: A Review. Journal of Al-Qadisiyah for Computer Science and Mathematics, 15(2), Comp Page 114–126. https://doi.org/10.29304/jqcm.2023.15.2.1236

Issue

Section

Computer Articles