Weak Gamma (Quasi-) Continuous Modules

Authors

  • Ghassan Nieaf Abdulrazaq aDepartment of Mathematics, College of Science, University of Al-Qadisiyah, Diwaniyah- Ira
  • Emad Allawi Shallal Department of Mathematics, College of Science, University of Al-Qadisiyah, Diwaniyah- Iraq

DOI:

https://doi.org/10.29304/jqcm.2023.15.2.1248

Keywords:

Gamma module, weak gamma summand, weak continuous gamma module, weak quasi-continuous gamma module, weak gamma extending module

Abstract

In this paper, we introduce and study the concept of weak gamma continuous modules as a generalization of continuous gamma modules.   A gamma submodule  of a gamma module   is called weak gamma summand if there exists submodule  of  and there exists an  ideal  of  where  and . An module   is called weak gamma extending module if every submodule  of  is essential in a weak gamma summand.  An module is called weak gamma continuous module if is it weak gamma extending module and if for each submodule  of  is isomorphic to a direct summand of , then  is weak gamma summand of .  Also it is called weak gamma quasi-continuous module if is weak gamma extending module and if  and  are direct summands of  with , then  is a weak gamma summand of . Many properties and results of the these modules are given

Downloads

Download data is not yet available.

References

[1] M.S.Abbas, S.A.Al-Saadi and E.A. Shallal, (Quasi-)Injective gamma module, International Journal of Advanced Research, 4(10), 2016, (327-333).
[2] Ameri R and Sadeghi R, Gamma module, Ratio Mathematics, 20, (2010), 127-147.
[3]M.S. Abbas, S.A. Al-Saadi and E.A.Shallal , (Quasi-)Injective extending gamma modules, journal of Al-Qadisiyah for Computer Science and Mathematices, 9(2), (2017),71-80.
[4] N. Nobusawa, 1964, On a generalization of the ring theory, Osaka Journal Math., 1,pp. 81-89.
[5] E.A.Shallal, Idempotint extending modules, Journal of physics: Conference Series, 1664, (2020), 1-7.
[6] E.A.Shallal and G.N. Abdulrazaq , (Quasi-) Continuous gamma modules, An Interdisciplinary journal of Neuroscience and Quantum physics, 20, No 9 (2022).
[7] E.A.Shallal , A.T.Husseien and A.K.Lelo , Power gamma extending modules, Italian journal of pure and applied Mathematics – N.47-2022(950-957).

Downloads

Published

2023-09-25

How to Cite

Abdulrazaq, G. N., & Shallal, E. A. (2023). Weak Gamma (Quasi-) Continuous Modules. Journal of Al-Qadisiyah for Computer Science and Mathematics, 15(2), Math Page . 41–45. https://doi.org/10.29304/jqcm.2023.15.2.1248

Issue

Section

Math Articles