QC-Continuous and QC-Quasi-Continuous Modules
Keywords:
QC-Continuous, QC-Quasi-Continuous, R-moduleAbstract
In this work, we introduce the class of QC-Continuous and QC-Quasi-Continuous which are stronger than the class Continuous and Quasi-Continuous modules . where an R-module M is called QC-Continuous if M is fully Extending and has (C2) , an R-module M is called QC-Quasi-Continuous if M is fully Extending and has (C3).
Downloads
Download data is not yet available.
References
[1] M. S. Abbas: On fully stable modules, Ph.D. Thesis, University of Baghdad, Iraq, 1991.
[2] S. A. Al-Saadi: S-extending Module and related concept, Ph.D. Thesis, Al-Mustansiriya Univ. ,Iraq ,2007.
[3] N. Alkan and A. Harmansi: On Summand sum and summand intersection property of modules, Turk. J. Math. 26,2002,131-147.
[4] F. W. Anderson and K. R. Fuller: Rings and Categories of Modules, Springer-Verlag. New York 1973.
[5] N. V. Dung; D. V. Huynh; P. F. Smith and R.Wisbauer: Extending modules, Pitman Research Notes in Mathematics Series, 313(1994).
[6] K. R. Goodear: Ring theory, Non-singular rings and modules, Marcel Dekker, INC. , New York and Basel, 1976.
[7] I. M. A. Hadi; M. A. Ahmed: Fully Extending Modules, International Journal of Algebra, Vol.7,2013,no. 3 ,101-114.
[8] S. H. Mohamed and B. J. Muller: Continuous and discrete modules, London Math. Soc. Lecture Notes Series 147, Cambridge Univ. Press, 1990.
[2] S. A. Al-Saadi: S-extending Module and related concept, Ph.D. Thesis, Al-Mustansiriya Univ. ,Iraq ,2007.
[3] N. Alkan and A. Harmansi: On Summand sum and summand intersection property of modules, Turk. J. Math. 26,2002,131-147.
[4] F. W. Anderson and K. R. Fuller: Rings and Categories of Modules, Springer-Verlag. New York 1973.
[5] N. V. Dung; D. V. Huynh; P. F. Smith and R.Wisbauer: Extending modules, Pitman Research Notes in Mathematics Series, 313(1994).
[6] K. R. Goodear: Ring theory, Non-singular rings and modules, Marcel Dekker, INC. , New York and Basel, 1976.
[7] I. M. A. Hadi; M. A. Ahmed: Fully Extending Modules, International Journal of Algebra, Vol.7,2013,no. 3 ,101-114.
[8] S. H. Mohamed and B. J. Muller: Continuous and discrete modules, London Math. Soc. Lecture Notes Series 147, Cambridge Univ. Press, 1990.
Downloads
Published
2020-12-21
How to Cite
Shallal, E. A. (2020). QC-Continuous and QC-Quasi-Continuous Modules. Journal of Al-Qadisiyah for Computer Science and Mathematics, 5(2), Math Page 130– 135. Retrieved from https://jqcsm.qu.edu.iq/index.php/journalcm/article/view/719
Issue
Section
Math Articles