New Results on Coefficient Estimates for Different Classes of Bi-Univalent Functions

Authors

  • Semh Kadhim Gebur Department of Mathematic , College of Education for Girls, University of Kufa, Najaf, Iraq
  • Waggas Galib Atshan Department of Mathematics, College of Science, University of Al-Qadisiyah, Diwaniya, Iraq

DOI:

https://doi.org/10.29304/jqcsm.2024.16.21557

Keywords:

Analytic functions, Bi-univalent, Coefficient bounds, Univalent functions

Abstract

In the current work, we investigate two new subclasses and  of class  of bi-univalent functions found within the open unit disk . We derive the normalized forms of functions that belong to the two classes described above. Furthermore, we obtain estimates of the starting coefficients  and  for these functions. Multiple classifications are also taken into consideration, and connections to previously established findings are established.

Downloads

Download data is not yet available.

References

W. G. Atshan, I. A. R. Rahman, and A. A. Lupaş, "Some results of new subclasses for bi-univalent functions using quasi-subordination," Symmetry, vol. 13, (2021), p. 1653, doi: https://www.mdpi.com/2073-8994/13/9/1653#.

M. Lewin, "On a coefficient problem for bi-univalent functions," Proc. Amer. Math. Soc., vol. 18, (1967), pp. 63-68.

D. A. Brannan, J. Clunie, and W. E. Kirwan, "Coefficient estimates for a class of star-like functions," Can. J. Math., vol. 22, (1970), pp. 476-485, doi: https://doi.org/10.4153/CJM-1970-055-8.

D. A. Brannan and T. Taha, "On some classes of bi-univalent functions," in Mathematical Analysis and Its Applications, Elsevier, (1988), pp. 53-60.

M. Çağlar, H. Orhan, and N. Yağmur, "Coefficient bounds for new subclasses of bi-univalent functions," Filomat, vol. 27, (2013), pp. 1165-1171.

A. M. Darweesh, W. G. Atshan, A. H. Battor, and M. S. Mahdi, "On the third Hankel determinant of certain subclass of bi-univalent functions," Math. Model. Eng. Probl., vol. 10, (2023), p. 1087, doi: https://doi.org/10.18280/mmep.100345.

P. L. Duren, Univalent Functions, Springer Science & Business Media, (2001), p. 384.

P. Goswami, B. Alkahtani, and T. Bulboaca, "Estimate for initial Maclaurin coefficients of certain subclasses of bi-univalent functions," arXiv:1503.04644, (2015), pp. 1-8.

H. Srivastava and S. S. Eker, "Some applications of a subordination theorem for a class of analytic functions," Appl. Math. Lett., vol. 21, (2008), pp. 394-399, doi: https://doi.org/10.1016/j.aml.2007.02.032.

H. Srivastava, S. S. Eker, and R. M. Ali, "Coefficient bounds for a certain class of analytic and bi-univalent functions," Filomat, vol. 29, (2015), pp. 1839-1843.

H. Srivastava, S. Gaboury, and F. Ghanim, "Coefficient estimates for some general subclasses of analytic and bi-univalent functions," Afr. Mat., vol. 28, (2017), pp. 693-706, doi: https://doi.org/10.1007/s13370-016-0478-0.

W. Galib, R. Abd AL-Sajjad, and Ş. ALTinkaya, "On the Hankel determinant of m-fold symmetric bi-univalent functions using a new operator," Gazi Univ. J. Sci., vol. 36, (2023), pp. 349-360, doi: https://doi.org/10.35378/gujs.958309.

E. I. Badiwi, W. G. Atshan, A. N. Alkiffai, and A. A. Lupas, "Certain results on subclasses of analytic and bi-univalent functions associated with coefficient estimates and quasi-subordination," Symmetry, vol. 15, (2023), p. 2208, doi: https://doi.org/10.3390/sym15122208.

S. Bulut, "Certain subclasses of analytic and bi-univalent functions involving the q-derivative operator," Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 66, (2017), pp. 108-114, doi: https://doi.org/10.1501/Commua1_0000000780.

M. Çağlar, E. Deniz, and H. M. Srivastava, "Second Hankel determinant for certain subclasses ofbi-univalent functions," Turk. J. Math., vol. 41, (2017), pp. 694-706, doi: https://doi.org/10.3906/mat-1602-25.

T. G. Shaba, "Subclass of bi-univalent functions satisfying subordinate conditions defined by Frasin differential operator," Turk. J. Ineq., vol. 4, (2020), pp. 50-58.

Q. A. Shakir and W. G. Atshan, "On third Hankel determinant for certain subclass of bi-univalent functions," Symmetry, vol. 16, (2024), p. 239, doi: https://doi.org/10.3390/sym16020239.

H. Srivastava, Ş. Altınkaya, and S. Yalçın, "Certain subclasses of bi-univalent functions associated with the Horadam polynomials," Iran. J. Sci. Technol. Trans. Sci., vol. 43, (2019), pp. 1873-1879, doi: https://doi.org/10.1007/s40995-018-0647-0.

A. Akgül, "$(P, Q) $-Lucas polynomial coefficient inequalities of thebi-univalent function class," Turk. J. Math., vol. 43, (2019), pp. 2170-2176, doi: https://doi.org/10.3906/mat-1903-38.

A. Akgül and F. M. Sakar, "A certain subclass of bi-univalent analytic functions introduced bymeans of the $ q $-analogue of Noor integral operator and Horadam polynomials," Turk. J. Math., vol. 43, (2019), pp. 2275-2286, doi: https://doi.org/10.3906/mat-1905-17.

S. A. AL-Ameedee, W. G. Atshan, and F. A. AL-Maamori, "Second Hankel determinant for certain subclasses of bi-univalent functions," in Journal of Physics: Conference Series, vol. 1664, (2020), p. 012044, doi: https://doi.org/10.1088/1742-6596/1664/1/012044.

H. Aldweby and M. Darus, "Coefficient estimates for initial Taylor-Maclaurin coefficients for a subclass of analytic and bi-univalent functions associated with q-derivative operator," Recent Trends Pure Appl. Math., (2017), pp. 109-117.

R. M. Ali, S. K. Lee, V. Ravichandran, and S. Supramaniam, "Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions," Appl. Math. Lett., vol. 25, (2012), pp. 344-351, doi: https://doi.org/10.1016/j.aml.2011.09.012.

S. Altinkaya and S. Yalçın, "Some applications of the (p, q)-Lucas polynomials to the bi-univalent function class $Sigma$," Math. Sci. Appl. E-Notes, vol. 8, (2020), pp. 134-141, doi: https://doi.org/10.36753/mathenot.650271.

W. G. Atshan and E. I. Badawi, "Results on coefficient estimates for subclasses of analytic and bi-univalent functions," in Journal of Physics: Conference Series, vol. 1294, (2019), p. 032025, doi: https://doi.org/10.1088/1742-6596/1294/3/032025.

I. A. R. Rahman, W. G. Atshan, and G. I. Oros, "New concept on fourth Hankel determinant of a certain subclass of analytic functions," Afr. Mat., vol. 33, (2022), doi: https://doi.org/10.1007/s13370-021-00957-8.

P. O. Sabir, H. M. Srivastava, W. G. Atshan, P. O. Mohammed, N. Chorfi, and M. Vivas-Cortez, "A family of holomorphic and m-fold symmetric bi-univalent functions endowed with coefficient estimate problems," Mathematics, vol. 11, (2023), p. 3970, doi: https://doi.org/10.3390/math11183970.

T. Seoudy and M. Aouf, "Convolution properties for certain classes of analytic functions defined by-derivative operator," Abstr. Appl. Anal., vol. 2014, (2014), pp. 1-7, doi: https://doi.org/10.1155/2014/846719.

B. A. Frasin and M. Aouf, "New subclasses of bi-univalent functions," Appl. Math. Lett., vol. 24, (2011), pp. 1569-1573, doi: https://doi.org/10.1016/j.aml.2011.03.048.

H. Güney, G. Murugusundaramoorthy, and K. Vijaya, "Coefficient bounds for subclasses of biunivalent functions associated with the Chebyshev polynomials," J. Complex Anal, vol. 2017, (2017), pp. 1-7, doi: https://doi.org/10.1155/2017/4150210.

F. H. Jackson, "XI.—On q-functions and a certain difference operator," Trans. Roy. Soc. Edinb., vol. 46, (1909), pp. 253-281, doi: https://doi.org/10.1017/S008045680000275.

A. Lupas, "A guide of Fibonacci and Lucas polynomials," Oct. Math. Mag., vol. 7, (1999), pp. 2-12.

G. Murugusundaramoorthy, K. Vijaya, and H. Ö. GÜNEY, "On λ-Pseudo bi-starlike functions with respect to symmetric points associated to shell-like curves," Kragujev. J. Math., vol. 45, (2021), pp. 103-114.

F. M. Sakar and H. Ö. Güney, "Coefficient bounds for certain subclasses of m-fold symmetric bi-univalent functions based on the Q-derivative operator," Konuralp J. Math., vol. 6, (2018), pp. 279-285.

H. Orhan and H. Arikan, "(P, Q)–Lucas polynomial coefficient inequalities of bi-univalent functions defined by the combination of both operators of Al-Aboudi and Ruscheweyh," Afr. Mat., vol. 32, (2021), pp. 589-598, doi: https://doi.org/10.1007/s13370-020-00847-5.

A. Patil and T. Shaba, "On sharp Chebyshev polynomial bounds for a general subclass of bi-univalent functions," Appl. Sci., vol. 23, (2021), pp. 109-117.

H. M. Srivastava, A. K. Mishra, and P. Gochhayat, "Certain subclasses of analytic and bi-univalent functions," Appl. Math. Lett., vol. 23, (2010), pp. 1188-1192, doi: https://doi.org/10.1016/j.aml.2010.05.009.

S. Yalçın, W. G. Atshan, and H. Z. Hassan, "Coefficients assessment for certain subclasses of bi-univalent functions related with quasi-subordination," Publ. Inst. Math., vol. 108, (2020), pp. 155-162, doi: https://doi.org/10.2298/PIM2022155Y.

Downloads

Published

2024-06-30

How to Cite

Kadhim Gebur, S., & Galib Atshan, W. (2024). New Results on Coefficient Estimates for Different Classes of Bi-Univalent Functions. Journal of Al-Qadisiyah for Computer Science and Mathematics, 16(2), Math. 103–110. https://doi.org/10.29304/jqcsm.2024.16.21557

Issue

Section

Math Articles

Most read articles by the same author(s)

<< < 1 2 3 > >>