Secure Communication Frame for Aerial Networks

Authors

  • Onss Dhurgham Hashim Hani
  • Abbas Abdulazeez Abdulhameed basabdulazeez@uomustansiriyah.edu.iq

DOI:

https://doi.org/10.29304/jqcsm.2024.16.41788

Keywords:

Internet of Things, Internet of Drones, Aerial Networks, Connection Protocols, Drones, MAVLink

Abstract

This research explores the seamless integration of the Internet of Things (IoT) within the realm of Unmanned Aerial Vehicles (UAVs), resulting in the paradigm of the Internet of Drones (IoD) to create a unified framework that connects both aerial and ground-based systems, enabling an interconnected system. The primary objective is to enhance the operational efficiency, scalability, and innovation potential of drone systems while addressing critical challenges related to connectivity, data management, and security in this emerging paradigm. Securing IoD is essential to protect against a wide range of cyber threats. Moreover, secure communication channels will strengthen the resilience of IoD systems, enabling them to operate safely in dynamic and potentially hostile environments. As IoD systems will rely on continuous communication between drones and IoT devices, securing these exchanges without compromising performance is a primary concern. The research aims to set a foundation for the practical implementation of IoD systems, ensuring secure and efficient operations in diverse applications. The feasibility of implementing a virtual drone framework should be evaluated using open-source simulators or network simulators before deploying the IoD in real-world applications. The Mission Planner simulator, as an open-source tool, offers a wide range of capabilities, including motion capture, collision detection, ease of programming, and support for multiple sensor types, making it ideal for initial tests. In addition, designing a secure IoD communication framework is essential to ensure safe data transfer between IoD endpoints with minimal impact on system performance. To achieve this, the study reviews several secure IoD communication frameworks that incorporate advanced cryptographic techniques. These frameworks are crucial for safeguarding the integrity, confidentiality, and authenticity of data exchanged within the IoD network.

Downloads

Download data is not yet available.

References

Lakshman, S. A., & Ebenezer, D. (2021). Integration of internet of things and drones and its future applications. Materials Today: Proceedings, 47(4), 944–949. https://doi.org/10.1016/j.matpr.2021.05.039

Samanth, S., K. V., P., & Balachandra, M. (2022). Security in Internet of Drones: A comprehensive review. Cogent Engineering, 9(1), Article 2029080. https://doi.org/10.1080/23311916.2022.2029080

Abualigah, L., Diabat, A., Sumari, P., & Gandomi, A. H. (2021). Applications, deployments, and integration of internet of drones (iod): a review. IEEE Sensors Journal, 21(22), 25532-25546. https://doi.org/10.1109/JSEN.2021.3082595

Labib, N. S., et al. (2021). The rise of drones in internet of things: A survey on the evolution, prospects, and challenges of unmanned aerial vehicles. IEEE Access, 9, 115466–115487. https://doi.org/10.1109/ACCESS.2021.3070405

Sharma, A., Vanjani, P., Paliwal, N., Basnayaka, C. M. W., Jayakody, D. N. K., Wang, H.-C., & Muthuchidambaranathan, P. (2020). Communication and networking technologies for UAVs: A survey. Journal of Network and Computer Applications, 168, Article 102739. https://doi.org/10.1016/j.jnca.2020.102739

Ghamari, M., Rangel, P., Mehrubeoglu, M., Tewolde, G. S., & Sherratt, R. S. (2022). Unmanned aerial vehicle communications for civil applications: A review. IEEE Access, 10, 102492-102531. https://doi.org/10.1109/ACCESS.2022.3208571

Dey, V., Pudi, V., Chattopadhyay, A., & Elovici, Y. (2018). Security vulnerabilities of unmanned aerial vehicles and countermeasures: An experimental study. In 2018 31st International Conference on VLSI Design and 2018 17th International Conference on Embedded Systems (VLSID) (pp. 398–403). IEEE. https://doi.org/10.1109/VLSID.2018.97

Bunse, C., & Plotz, S. (2018). Security analysis of drone communication protocols. In Engineering Secure Software and Systems: 10th International Symposium, ESSoS 2018, Paris, France, June 26-27, 2018, Proceedings (Vol. 10953, pp. 96–107). Springer International Publishing. https://doi.org/10.1007/978-3-319-94496-8_7

Allouch, A., Cheikhrouhou, O., Koubâa, A., Khalgui, M., & Abbes, T. (2019). MAVSec: Securing the MAVLink protocol for ardupilot/PX4 unmanned aerial systems. In 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC) (pp. 621–628). IEEE. https://doi.org/10.1109/IWCMC.2019.8766667

Chaari, L., Chahbani, S., & Rezgui, J. (2020, November). MAV-DTLS toward security enhancement of the UAV-GCS communication. In 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall) (pp. 1-5). IEEE. https://doi.org/10.1109/VTC2020-Fall49728.2020.9348584

Nayyar, A., Nguyen, B. L., & Nguyen, N. G. (2020). The Internet of Drone Things (IoDT): Future envision of smart drones. In A. Luhach, J. Kosa, R. Poonia, X. Z. Gao, & D. Singh (Eds.), First International Conference on Sustainable Technologies for Computational Intelligence: Advances in Intelligent Systems and Computing (Vol. 1045, pp. 569–579). Springer. https://doi.org/10.1007/978-981-15-0029-9_45

Abdelmaboud, A. (2021). The Internet of Drones: Requirements, taxonomy, recent advances, and challenges of research trends. Sensors, 21(17), Article 5718. https://doi.org/10.3390/s21175718

Boccadoro, P., Striccoli, D., & Grieco, L. A. (2021). An extensive survey on the Internet of Drones. Ad Hoc Networks, 122, Article 102600. https://doi.org/10.1016/j.adhoc.2021.102600

Ismael, H. M. (2021). Authentication and encryption of drone communication using the HIGHT lightweight algorithm. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(11), 5891–5908. https://doi.org/10.17762/turcomat.v12i11.6875

Kassim, G. E., & Hashem, S. H. (2022). DMAV: Enhanced MAVLink protocol using dynamic DNA coding for unmanned aerial vehicles. International Journal of Online and Biomedical Engineering, 18(11). https://doi.org/10.3991/ijoe.v18i11.34085

Abdulhameed, A. A., Al-Azawi, R. J., & Al-Mahdawi, B. M. (2020). Modeling Web Security Analysis Attacks with CySeMoL Tool. Al-Mustansiriyah Journal of Science, 31(3), 101–109. DOI: http://doi.org/10.23851/mjs.v31i3.876

Omolara, A. E., Alawida, M., & Abiodun, O. I. (2023). Drone cybersecurity issues, solutions, trend insights and future perspectives: a survey. Neural computing and applications, 35(31), 23063-23101. doi.org/10.1007/s00542-023-07601-3

Ali, H. H., Naif, J. R., & Humood, W. R. (2023). A new smart home intruder detection system based on deep learning. Al-Mustansiriyah Journal of Science, 34(2), 60–69. DOI: http://doi.org/10.23851/mjs.v34i2.1267

Kumar, A., & Mehta, P. L. (2021). Internet of Drones: An engaging platform for IIoT-oriented airborne sensors. In D. Gupta, V. Hugo C. de Albuquerque, A. Khanna, & P. L. Mehta (Eds.), Smart Sensors for Industrial Internet of Things: Internet of Things (pp. 275–289). Springer. https://doi.org/10.1007/978-3-030-52624-5_16

Chakraa, H., Guérin, F., Leclercq, E., & Lefebvre, D. (2023). Optimization techniques for Multi-Robot Task Allocation problems: Review on the state-of-the-art. Robotics and Autonomous Systems, 104492. https://doi.org/10.1016/j.robot.2023.104492

Yanmaz, E., Yahyanejad, S., Rinner, B., Hellwagner, H., & Bettstetter, C. (2018). Drone networks: Communications, coordination, and sensing. Ad Hoc Networks, 68, 1–15. https://doi.org/10.1016/j.adhoc.2017.09.001

Haider, S. K., Nauman, A., Jamshed, M. A., Jiang, A., Batool, S., & Kim, S. W. (2022). Internet of Drones: Routing algorithms, techniques, and challenges. Mathematics, 10(9), Article 1488. https://doi.org/10.3390/math10091488

Yaacoub, J.-P., Noura, H., Salman, O., & Chehab, A. (2020). Security analysis of drone systems: Attacks, limitations, and recommendations. Internet of Things, 11, Article 100218. https://doi.org/10.1016/j.iot.2020.100218

Majed, D. M., Abdulhameed, A. A., & Gaata, M. T. (2023). Botnet creation, life cycle, infrastructure, and detection techniques. In 2023 Second International Conference on Advanced Computer Applications (ACA) (pp. 25–29). IEEE. https://doi.org/10.1109/ACA57612.2023.1034666

Khan, N. A., Jhanjhi, N. Z., Brohi, S. N., & Nayyar, A. (2020). Emerging use of UAVs: Secure communication protocol issues and challenges. In F. Al-Turjman (Ed.), Drones in Smart Cities (pp. 37–55). Elsevier. https://doi.org/10.1016/B978-0-12-819972-5.00003-3

UAVCAN Development Team. (2019). UAVCAN communication protocol. Retrieved from https://uavcan.org.

Koubâa, A., Allouch, A., Alajlan, M., Javed, Y., Belghith, A., & Khalgui, M. (2019). Micro Air Vehicle Link (MAVLink) in a nutshell: A survey. IEEE Access, 7, 87658–87680. DOI: 10.1109/ACCESS.2019.2924410

Chen, H. H. (2024). Developing a custom communication protocol for UAVs: Ground control station and architecture design. Internet of Things, 27, Article 101319. https://doi.org/10.1016/j.iot.2024.101319

Khan, M. A., Kumar, N., Mohsan, S. A. H., Khan, W. U., Nasralla, M. M., Alsharif, M. H., & Ullah, I. (2022). Swarm of UAVs for network management in 6G: A technical review. IEEE Transactions on Network and Service Management, 20(1), 741-761. https://doi.org/10.1109/TNSM.2022.3213370

Dorave, J., & Sadiwala, R. (2022). A secure communication protocol for unmanned aerial vehicles using IoT protocols. SAMRIDDHI: A Journal of Physical Sciences, Engineering and Technology, 14(04), 79-88. https://doi.org/10.18090/samriddhi.v14i04.13

Collins, J., Chand, S., Vanderkop, A., & Howard, D. (2021). A review of physics simulators for robotic applications. IEEE Access, 9, 51416-51431. https://doi.org/10.1109/ACCESS.2021.3068762

Rani, S., Chauhan, M., Kataria, A., & Khang, A. (2023). IoT equipped intelligent distributed framework for smart healthcare systems. In Towards the Integration of IoT, Cloud and Big Data: Services, Applications and Standards (pp. 97-114). Springer Nature Singapore. https://doi.org/10.1007/978-3-030-52624-5_16

Eskandaripour, H., & Boldsaikhan, E. (2023). Last-mile drone delivery: Past, present, and future. Drones, 7(2), 77. https://doi.org/10.3390/drones7020077

Abro, G. E. M., Zulkifli, S. A. B., Masood, R. J., Asirvadam, V. S., & Laouiti, A. (2022). Comprehensive review of UAV detection, security, and communication advancements to prevent threats. Drones, 6(10), 284. https://doi.org/10.3390/drones6100284

Mekdad, Y., Aris, A., Babun, L., El Fergougui, A., Conti, M., Lazzeretti, R., & Uluagac, A. S. (2023). A survey on security and privacy issues of UAVs. Computer Networks, 224, 109626. https://doi.org/10.1016/j.comnet.2022.109626

Mahato, P., Saha, S., Sarkar, C., & Shaghil, M. (2023). Consensus-based fast and energy-efficient multi-robot task allocation. Robotics and Autonomous Systems, 159, 104270. https://doi.org/10.1016/j.robot.2022.104270

Tlili, F., Fourati, L. C., Ayed, S., & Ouni, B. (2022). Investigation on vulnerabilities, threats and attacks prohibiting UAVs charging and depleting UAVs batteries: Assessments & countermeasures. Drones, 6(10), 284. https://doi.org/10.3390/drones6100284

Downloads

Published

2024-12-30

How to Cite

Dhurgham Hashim Hani , O., & Abdulazeez Abdulhameed , A. (2024). Secure Communication Frame for Aerial Networks . Journal of Al-Qadisiyah for Computer Science and Mathematics, 16(4), Comp. 277–293. https://doi.org/10.29304/jqcsm.2024.16.41788

Issue

Section

Computer Articles