Laguerre-Krall polynomials for nonlinear integral equations of the first kind
DOI:
https://doi.org/10.29304/jqcsm.2024.16.41794Keywords:
Nonlinear integral equations, Numerical methods, Laguerre-Krall polynomials, Orthogonal functionsAbstract
In this article, numerical method based on Laguerre-Krall polynomials for solving nonlinear integral equations (NIE) of the first type which is a malignant problem is discussed. This method reduces the operation of solving the problem and turns it into simple systems of obvious algebraic equations that are easily solvable. Four examples were presented to analyze the numerical method, applicability degree and accuracy of the method. Numerical results showed that the accuracy of this method is acceptable and good compared to other methods.
Downloads
References
A. Karimi, K. Maleknejad, R. Ezzati, Numerical solutions of system of two-dimensional Volterra integral equations via Legendre wavelets and convergence, Applied Numerical Mathematics,13 May 2020 Volume 156 (Cover date: October 2020) Pages 228-241. DOI:10.1016/j.cnsns.2010.05.006
X. Zhang, H. Du, A generalized collocation method in reproducing kernel space for solving a weakly singular Fredholm integro-differential equations Applied Numerical Mathematics4 May 2020 Volume 156 (Cover date: October 2020) Pages 158-173. DOI:10.1016/j.apnum.2020.04.019
A. Isah, C. Phang, New operational matrix of derivative for solving non-linear fractional differential equations via Genocchi polynomials, Journal of King Saud University - Science14 February 2017Volume 31, Issue 1 (Cover date: January 2019)Pages 1-7. https://doi.org/10.1016/j.jksus.2017.02.001
A. Isah, C. Phang, Operational matrix based on Genocchi polynomials for solution of delay differential equations, Ain Shams Engineering Journal21 March 2017 Volume 9, Issue 4 (Cover date: December 2018)Pages 2123-2128. . DOI:10.1016/j.asej.2016.09.015
MR. Beni, Legendre wavelet method combined with the Gauss quadrature rule for numerical solution of fractional integro-differential equations. Iran J Numer Anal Optim. 2022; 12(1): 229249, DOI 10.22067/IJNAO.2021.73189.1070
T. Deng, J. Huang, H. Liu, H. Li, Approximate solutions of fuzzy delay integral equations with weakly singular kernels by piecewise fuzzy polynomial interpolation, Fuzzy Sets and Systems, Volume 470, 30 October 2023, 108652. https://doi.org/10.1016/j.fss.2023.108652
R. Amin, S. Nazir, I. G. Magarino, Efficient sustainable algorithm for numerical solution of nonlinear delay Fredholm-Volterra integral equations via Haar wavelet for dense sensor networks in emerging telecommunications, Trans. Emerg. Telecommun. Technol. 30 (11) (2020) 1–12. https://doi.org/10.1002/ett.3877
D. Conte, E. Farsimadan, L. Moradi, F. Palmieri, B. Paternoster, Numerical solution of delay Volterra functional integral equations with variable bounds, Applied Numerical Mathematics, Available online 11 May 2023. https://doi.org/10.1016/j.apnum.2023.05.002
S. Bazm, P. Lima, S. Nemati, Analysis of the Euler and trapezoidal discretization methods for the numerical solution of nonlinear functional Volterra integral equations of Urysohn type, Journal of Computational and Applied Mathematics Volume 398, 15 December 2021, 113628. https://doi.org/10.1016/j.cam.2021.113628
M. Ghasemi, K. Mohammadi, A. Alipanah, Numerical solution of system of second-order integro-differential equations using non classical sinc collocation method. Bound Value Probl 2023; 38. http://dx.doi.org/10.1186/s13661-023-01724-3.
L. Liu, J. Ma, Collocation boundary value methods for auto-convolution Volterra integral equations, Applied Numerical Mathematics9 March 2022. https://doi.org/10.1016/j.apnum.2022.03.004
W. Zheng, Y. Chen, J. Zhou, A Legendre spectral method for multidimensional partial Volterra integro-differential equations, Journal of Computational and Applied Mathematics, Volume 436, 15 January 2024, 115302. https://doi.org/10.1016/j.cam.2023.115302
J. Zhao, R. Zhan, Y. Xu, Explicit exponential Runge–Kutta methods for semilinear parabolic delay differential equations, Mathematics and Computers in Simulation, 4 July 2020. https://doi.org/10.1016/j.matcom.2020.06.025
F. Hamani, A. Rahmoune, Efficient quadrature methods for solving Hammerstein integral equations on the half-line, Int. J. Nonlinear Anal. Appl. 13 (2022) 2, 361–369. https://doi.org/10.22075/ijnaa.2021.21812.2298
S. Torkaman, M. Heydari, An iterative Nyström-based method to solve nonlinear Fredholm integral equations of the second kind, Applied Numerical Mathematics Volume 194, December 2023, Pages 59-81. https://doi.org/10.1016/j.apnum.2023.08.009
A. Pedas, M. Vikerpuur, On the regularity of solutions to a class of nonlinear Volterra integral equations with singularities,Applied Numerical Mathematics,Volume 204, October 2024, Pages 176-187. https://doi.org/10.1016/j.apnum.2024.06.008
D. Conte, L. Moradi, B. Paternoster, H. Podhaisky, Collocation methods for nonlinear Volterra integral equations with oscillatory kernel,Applied Numerical Mathematics, Volume 20, September 2024, Pages 1-15. https://doi.org/10.1016/j.apnum.2024.05.002
S. T. Abdulghafoor, E. Najafi, Numerical solution for a generalized form of nonlinear cordial Volterra integral equations using quasilinearization and Legendre-collocation methods, Applied Numerical Mathematics, Volume 20, January 2025, Pages 384-399. https://doi.org/10.1016/j.apnum.2024.09.013
S. Torkaman, M. Heydari, An iterative Nystrom-based method to solve nonlinear Fredholm integral equations of the second kind, Applied Numerical Mathematics,Volume 194, December 2023, Pages 59-81. https://doi.org/10.1016/j.apnum.2023.08.009
E. Hashemizadeh, A. Ebrahimzadeh, Optimal Control of Volterra Integral Equations of Third Kind Using Krall-Laguerre Polynomials, Results in Control and Optimization Available online, September 2024, 100473. https://doi.org/10.1016/j.rico.2024.100473
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Bashar Najm Abdullah Hussein Al janabi
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.