Results on New Subclasses of m-fold Symmetric Bi-Univalent functions using Coefficient Inequalities

Authors

  • Sara Falih Makttoof Department of Mathematics, College of Education for Girls, University of kufa , Najaf-Iraq
  • Ameera N. Alkiffai Department of Mathematics, College of Education for Girls, University of kufa , Najaf-Iraq.
  • Waggas Galib Atshan Department of Mathematics, College Science, University of Al-Qadisiyah , Diwaniyah-Iraq.

DOI:

https://doi.org/10.29304/jqcsm.2025.17.12004

Keywords:

bi-univalent functions, coefficient inequalities, convex, m-fold symmetric

Abstract

In this paper, we introduce two new subclasses and  of the m-fold symmetric bi-univalent functions that are defined in the open unit disc . Moreover, the upper bounds for the first two Taylor-Maclaurin ,   are obtained with some corollaries.

Downloads

Download data is not yet available.

References

E. A. Adegani, S. Bulut and A. A. Zireh, Coefficient estimates for a subclass of analytic bi-univalent functions, Bull. Korean Math. Soc. , 55(2) (2018), 405-413.

I. Aldawish, S. R. Swamy and B. A. Frasin, A special family of -fold symmetric bi univalent functions satisfying subordination condition, Fractal Fractional, 6 (2022), 271.

S. Altinkaya and S. Yalçin, Coefficient bounds for certain subclasses of -fold symmetric bi-univalent functions, Journal of Mathematics ,2015 (2015), Art. ID 241683, 1-5.

S. Altinkaya and S. Yalçin, On some subclasses of -fold symmetric bi-univalent functions, Commun. Fac. Sci. Univ. Ank. Series A1, 67(1) (2018), 29-36.

A. Amourah, A. Alamoush, and M. Al-Kaseasbeh, Gegenbauer polynomials and bi univalent functions, Palestine Journal of Mathematics 10(2) (2021), 625-632.

W.G. Atshan, R. A. Al-Sajjad and S. Altinkaya, On the Hankel determinant of m-fold symmetric bi-univalent functions using a new operator, Gazi University Journal of Science, 36(1)(2023), PP. 349-360.

W. G. Atshan, S. Yalcin and R. A. Hadi, Coefficient estimates for special subclasses of K-fold symmetric bi-univalent functions, Mathematics for Applications, 1(2)(2020), PP. 83-90.

D. A. Brannan and T. S. Taha, On Some classes of bi-univalent functions, Studia Univ. Babes-Bolyai. Math., 31(2) (1986), 70-77.

S. Bulut, Coefficient estimates for general subclasses of -fold symmetric analytic biunivalent functions, Turkish J. Math. 40 (2016), 1386-1397.

P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer Verlag, New York, Berlin, Heidelberg and Tokyo, (1983).

S. P. Goyal and P. Goswami, Estimate for initial Maclaurin coefficients of bi-univalent functions for a class defined by fractional derivatives, J. Egyptian Math. Soc. 20 (2012), 179-182.

W. Koepf, Coefficients of symmetric functions of bounded boundary rotations, Proc. Amer. Math. Soc. 105 (1989), 324-329.

X. F. Li and A. P. Wang, Two new subclasses of bi-univalent functions, Int. Math. Forum, 7(2) (2012), 1495-1504.

P. O. Sabir, H. M. Srivastava, W. G. Atshan, M. P. Othman, C. Nejmeddine univalent functions Endowed with coefficient estimate problems, Mathematics, 11(18) (2023), 3970.

Q. A. Shakir, A. S. Tayyah, D. Breaz, L.-I. Cotîrlă, E. Rapeanu, and F. M. Sakar, "Upper bounds of the third Hankel determinant for bi-univalent functions in crescent-shaped domains," Symmetry, vol. 16, p. 1281, 2024.

Q. A. Shakir and W. G. Atshan, "On third Hankel determinant for certain subclass of bi-univalent functions," Symmetry, vol. 16, p. 239, 2024.

H. M. Srivastava, S. Bulut, M. Caglar and N. Yagmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat ,27(5) (2013), 831-842.

H. M. Srivastava, S. S. Eker and R. M. Ali, Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat, 29 (2015), 1839-1845.

H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi univalent functions, Appl. Math. Lett., 23 (2010), 1188-1192.

H. M. Srivastava, S. Sivasubramanian and R. Sivakumar, Initial coefficient bounds for a subclass of -fold symmetric bi-univalent functions, Tbilisi Math. J., 7(2) (2014), 1-10.

H. M. Srivastava and A. K. Wanas, Initial Maclaurin coefficient bounds for new subclasses of analytic and -fold symmetric bi-univalent functions defined by a linear combination, Kyungpook Math. J., 59 (2019), 493-503.

H. Tang, H. M. Srivastava, S. Sivasubramanian and P. Gurusamy, The Fekete-Szego functional problems for some subclasses of -fold symmetric bi-univalent functions, J. Math. Inequal., 10 (2016), 1063-1092.

A. S. Tayyah, W. G. Atshan, "Starlikeness and bi-starlikeness associated with a new carathéodory function," J. Math. Sci. (2025). https://doi.org/10.1007/s10958-025-07604-8.

A. S. Tayyah, W. G. Atshan, "A class of bi-bazilevič and bi-pseudo-starlike functions involving tremblay fractional derivative operator," Probl. Anal. Issues Anal., 14(32)(2)(2025), in press.

A. K. Wanas and H. Tang, Initial coefficient estimates for a classes of -fold symmetric bi-univalent functions involving Mittag-Leffler function, Mathematica Moravica, 24(2) (2020), 51-61.

S. Yalcin, W. G. Atshan and H-Z. Hassan, Coefficients assessment for certain subclasses of bi-univalent functions related with quasi-subordination, Publications de l'Institut Mathematique, 108(122) (2020), PP. 155-162.

Downloads

Published

2025-03-30

How to Cite

Falih Makttoof, S., N. Alkiffai, A., & Galib Atshan, W. (2025). Results on New Subclasses of m-fold Symmetric Bi-Univalent functions using Coefficient Inequalities. Journal of Al-Qadisiyah for Computer Science and Mathematics, 17(1), Math 121–129. https://doi.org/10.29304/jqcsm.2025.17.12004

Issue

Section

Math Articles

Most read articles by the same author(s)

1 2 3 > >>