Applications of Quasi-Subordination on Subclasses of Bi-Univalent Functions Associated with Generalized Differential Operator

Authors

  • Muhammed Salih Muhammed Department of Mathematics College of Science University of Al-Qadisiyah, Diwaniyah-Iraq,
  • Waggas Galib Atshan Department of Mathematics College of Science University of Al-Qadisiyah, Diwaniyah-Iraq,

DOI:

https://doi.org/10.29304/jqcsm.2024.16.41796

Keywords:

Analytic functions, Quasi-subordination, Bi-univalent functions, Generalized differential operator, Coefficient estimates

Abstract

This paper introduces and defines subclasses of the function class  of analytic and bi-univalent functions associated with the operator  within the open unit disk through quasi-subordination. We derive results concerning the corresponding bound estimations of the coefficients  and .

Downloads

Download data is not yet available.

References

F. M. Al-Oboudi, On univalent functions defined by a generalized Salagean operator, Int. J. Math. Sci., (27) (2004) , 1429–1436.

S. Altinkaya and S. Yalcin, Faber polynomial coefficient bounds for a subclass of bi-univalent functions, C. R. Acad. Sci. Paris, Ser. I. ,(2015), 353, 1075-1080.

S. Altinkaya and S. Yalcin, Coefficient bounds for a subclass of bi- univalent functions, TWMS. Journal of Pure and Applied Mathematics, 6 (2015), 180-185.

S. Altinkaya and S. Yalcin, On a new subclass of bi-univalent functions satisfying subordinate conditions, Acta Universitatis Sapientiae, Mathematica ,(7) (2015), 5-14.

O. Altintas and S. Owa, Majorizations and quasi-subordinations for certain analytic functions, Proc. Jpn. Acad. Ser. A, 68(7) (1992), 181-185.

M. K. Aouf, R. M. El-Ashwah and S. M . El-Deeb, Some inequalities for certain p-valent functions involving extended multiplier transformations, Proc. Pakistan Acad. Sci., 46, (2009), 217–221.

W. G. Atshan, S. Yalcin and R. A. Hadi, Coefficients estimates for special subclass of k-fold symmetric bi-univalent functions, Mathematics for Applications 9(2) (2020), 83-90.

D. A. Brannan and T. S. Taha, On some classes of bi-univalent functions, Studia Univ. Babes Bolyai Math., 31 (1986), 70-77.

N. E. Cho and H .M . Srivastava, Argument estimates of certain analytic func- tions defined by a class of multiplier transformations, Math. Comp. Mode., 37, (2003), 39–49.

N. E. Cho and T .H . Kim, Multiplier transformations and strongly close-to- convex functions, Bull. Korean Math. Soc., 40, (2003), 399–410.

M. Darus and I. Faisal, Some subclasses of Analytic functions defined by generalized differential operator, Universitatis Apulensis, (29)(2012), 197-215.

E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Classical Ana ,2 (1), (2013), 49-60.

P. Duren, Subordination in Complex Analysis, Vol. 599 of Lecture Notes in Mathematics, pp.22-29, Springer, Berlin, Germany, (1977).

P. L.Duren, Univalent Functions, In: Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Hidelberg and Tokyo, (1983).

B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24 (2011), 1569-1573.

S. K. Gebur and W. G. Atshan, Second Hankel determinant and Fekete-Szegö problem for a new class of bi-univalent functions involving Euler polynomials, Symmetry, 16(5)(2024),530.

S. P. Goyal and R. Kumar, Coefficient estimates and quasi-subordination properties associated with certain sub- classes of analytic and bi-univalent functions, Math. Slovaca, 65 (2015), No. 3, 533–544.

S. P., Goyal, O. Singh, and R. Mukherjee , Certain results on a subclass of analytic and bi-univalent functions associated with coefficient estimates and quasi-subordination, Palestine J. Math., 5 (2016), No. 1, 79–85.

S. G. Hamidi and J. M. Jahangiri, Faber polynomial coefficient estimates for analytic bi-close to convex functions, C. R. Acad. Sci. Paris, Ser. I. ,(2014) (352), 17-20.

M. Lewin, On a coefficient problem for bi-univalent function, Proceedings of the American Mathematical Society, Vol. 18 (1967), 63-68.

W. Ma and D. Minda, Aunified treatment of some special classes of univalent functions, Proceedings of the conference on complex analysis, Z. Li. F. Ren, L. Yang and S. Zhang, eds., Int. Press (1994), 157-169.

H. Orhan, N. Magesh, and J. Yamini, Coefficient estimates for a class of bi-univalent functions associated with quasi-subordination. Creat .Math. inform. ,Volume 26 (2017), No. 2, 193-199.

A. Patil and U. Naik, Estimates on initil coefficients of certain subclasses of bi-univalent function associated with quasi-subordination, Global Journal of Mathematical Analysis, 5(1) (2017), 6-10.

I. A. R. Rahman and W. G. Atshan, Results on coefficients bounds for new subclasses by using quasi-subordination of analytic function estimates, AIP Conference Proceedings, 2398(1)(2022),060021.

M. S. Robertson, Quasi-subordination and coefficient conjecture, Bull. Amer. Math. Soc., 76 (1970), 1-9.

G. S. Salagean, Subclasses of univalent functions, Lecture Notes in Mathematics 1013, Springer-Verlag, (1983), 362–372.

S. R. Swamy and W. G. Atshan, Coefficient bounds for regular and bi-univalent functions linked with Gegenbauer polynomials, Gulf Journal of Mathematics, 13(2)(2022),67-77.

B. A. Uralegaddi and C. Somanatha, Certain classes of univalent functions, In: Current Topics in Analytic Function Theory, Eds. Srivastava, H.M. and Owa, S., World Scientific Publishing Company, Singapore, (1992), 371–374.

S. Yalcin, W. G. Atshan and H. Z . Hassan, Coefficients assessment for certain subclass of bi-univalent functions related with quasi-subordintion, Novelle serie, tome 108 (122) (2020), 155-162.

Q. A. Shakir, W. G. Atshan, On third Hankel determinant for certain subclass of bi-univalent functions, Symmetry, 16(2) (2024), 239, 1-10.

E. I. Badiwi, W. G. Atshan, A. N. Alkiffai and A. A. Lupas, Certain results on subclasses of analytic and bi-univalent functions associated with coefficient estimates and quasi-subordination, Symmetry, 15(12) (2023), 2208.

P. O. Sabir, H. M. Srivastava , W. G. Atshan, P. O. Mohammed, N. Chorfi and M. Vivas-Cortez, A family of holomorphic and m-fold Symmetric bi-univalent functions endowed with coefficient estimate problems, Mathematics, 11(18)(2023),3970

A. M. Darweesh, W. G. Atshan, A. H. Battor and M. S. Mahdi, on the third Hankel determinant of certain subclass of bi-univalent functions, Mathematical Modelling of Engineering problems, 10(3) (2023), PP.1087-1095.

W. G. Atshan and R. A. Al-sajjad, Some Applications of quasi-subordination for bi-univalent functions using Jackson, convolution operator, Iraqi Journal of Science, 63(10) (2022), pp.4417-4428.

Downloads

Published

2024-12-30

How to Cite

Salih Muhammed, M., & Galib Atshan, W. (2024). Applications of Quasi-Subordination on Subclasses of Bi-Univalent Functions Associated with Generalized Differential Operator. Journal of Al-Qadisiyah for Computer Science and Mathematics, 16(4), Math. 52–63. https://doi.org/10.29304/jqcsm.2024.16.41796

Issue

Section

Math Articles