Theorems of Strong Differential Sandwich Results for Analytic Functions Associated with Wanas Fractional Integral Operator

Authors

  • Samer Chyad Khachi Department of Mathematics, College of Science, University of Al-Qadisiyah,Iraq
  • Abbas Kareem Wanas Department of Mathematics, College of Science, University of Al-Qadisiyah,Iraq

DOI:

https://doi.org/10.29304/jqcsm.2023.15.41360

Keywords:

Analytic function, Strong Differential Subordination, Strong Differential Superordination, Fractional integral, Wanas operator

Abstract

The objective of this research is to produce robust differential subordination and differential superordination results using the fractional integral of the Wanas differential operator. These results apply to Analytic functions defined on , with Coefficient functions that are holomorphic in  Furthermore, for each instance of strong differential subordination and strong differential superordination, we provide the most superior dominant and the most subordinate subordinant. These findings are used to achieve strong sandwich results.

Downloads

Download data is not yet available.

References

E. H. Abd and W. G. Atshan, Strong subordination for p-valent functions involving a linear operator, J. Phys. Conf. Ser., 1818 (2021), 012113.

R. Aghalary and Arjomandinia, On a first order strong differential subordination and application to univalent functions, Commun. Korean Math. Soc., 37(2022) , 445-454.

J. W. Alexander, Functions which map the interior of the unit circle upon simple region, Annals of Mathematics, 17(1)(1915), 12-22.

F. M. Al-Oboudi, On univalent functions defined by a generaliʑed Salagean operator, Int. J. Math. Math. Sci., 27(2004), 1429-1436.

L. Andrei and M. Choban, Some strong differential subordinations using a differential operator, Carpathian J. Math., 31(2015) , 143-156.

J. A. Antonino and S. Romaguera, Strong differential subordination to Briot-Bouquet differential equations, J. Differ. Equ., 114(1)(1994), 101-105.

S. D. Bernardi, Convex and starlike univalent functions, Transactions of the American Mathematical Society, 135 (1969), 429-446.

N. E. Cho and H. M. Srivastava, Argument estimates of certain analytic functions defined by a class of multiplier transformations, Math. Comput. Modeling, 37(1-2)(2003), 39-49.

N. E. Cho and M. K. Aouf, Some applications of fractional calculus operators to a certain subclass of analytic functions with negative coefficients, Turkish J. Math., 20(1996), 553-562.

N. E. Cho, O. S. Kwon and H. M. Srivastava, Strong differential subordination and superordination for multivalently meromorphic functions involving the Liu–Srivastava operator, Integral Transform. Spec. Funct., 21(2010), 589-601.

M. P. Jeyaraman and T. K. Suresh, Strong differential subordination and superordination of analytic functions, J. Math. Anal. Appl., 368 (2012), 854-864.

I. B. Jung, Y. C. Kim and H. M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operators, Journal of Mathematical Analysis and Applications, 176(1993), 138-147.

A. A. Lupas, On special strong differential superordinations using Salagean and Ruscheweyh operators, J. Adv. Appl. Comput. Math., 1(2014), 28-34.

A. A. Lupas, On special strong differential subordinations using multiplier transformation, Appl. Math. Lett., 25(2012), 624-630.

A. A. Lupas and G. I. Oros, Strong differential superordination results involving extended Salagean and Ruscheweyh operators, Mathematics, 9(2021), 2487.

A. A. Lupas, G. I. Oros and Gh. Oros, On special strong differential subordinations using Salagean and Ruscheweyh operators, J. Comput. Anal. Appl., 14(2012), 266-270.

S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J., 28(1981), 157-171.

S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics Vol. 225, Marcel Dekker Inc., New York and Basel, 2000.

S. S. Miller and P. T. Mocanu, Second order-differential inequalities in the complex plane, J. Math. Anai. Appl., 65(10)(1978), 298-305.

S. S. Miller and P. T. Mocanu, Subordinates of differential superordinations, Complex Var. Theory Appl., 48(2003), 815-826.

G. I. Oros and A. O. Ta˘ut, Best subordinants of the strong differential superordination, Hacet. J. Math. Stat., 38(2009), 293-298.

G. I. Oros, Strong differential superordination, Acta Univ. Apulensis, 19(2009), 101-106.

G. I. Oros and G. Oros, Strong differential subordination, Turk. J. Math., 33(2009), 249-257.

A. Oshah and M. Darus, Strong differential subordination and superordination of new generaliʑed derivative operator, Korean J. Math., 23(2015), 503-519.

R. S.endru¸tiu, Strong differential subordinations obtained by Ruscheweyh operator, J. Comput. Anal. Appl., 14(2012), 328-340.

G. S. Salagean, Subclasses of univalent functions, Lecture Notes in Math., Springer Verlag, Berlin, 1013(1983), 362-372.

H. M. Srivastava and A. K. Wanas, Strong differential sandwich results of λ-pseudo-starlike functions with respect to symmetrical points, Math. Morav., 23(2019), 45-58.

H. M. Srivastava, A. A. Attiya, An integral operator associated with the Hurwitʑ-Lerch ʑeta function and differential subordination, Integral Transforms and Special Functions, 18(3) (2007), 207-216.

S. R. Swamy, Inclusion properties of certain subclasses of analytic functions, Int. Math. Forum, 7(36)(2012), 1751-1760.

S. R. Swamy, Some strong differential subordinations using a new generaliʑed multiplier transformation, Acta Univ. Apulensis, 34(2013), 285-291.

A. O. Ta˘ut, Some strong differential subordinations obtained by Salagean differential operator, Stud. Univ. Babes¸-Bolyai Math., 55(2010), 221-228.

B. A. Uralegaddi and C. Somanatha, Certain classes of univalent functions, in Current Topics in Analytic Function Theory, (Edited by H. M. Srivastava and S. Own), 371-374, World Scientific, Singapore, 1992.

A. K. Wanas and A. H. Majeed, New strong differential subordination and superordination of meromorphic multivalent quasi-convex functions, Kragujev. J. Math., 44(2020), 27-39.

A. K. Wanas and G. Murugusundaramoorthy, Differential sandwich results for Wanas operator of analytic functions, Mathematica Moravica, 24(1)(2020), 17-28.

A. K. Wanas, New differential operator for holomorphic functions, Earthline Journal of Mathematical Sciences, 2(2)(2019), 527-537.

A. K. Wanas, Some subordination results for fractional integral involving Wanas differential operator, Earthline Journal of Mathematical Sciences, 3(2)(2020), 199-205.

Downloads

Published

2023-12-30

How to Cite

Chyad Khachi, S., & Kareem Wanas , A. (2023). Theorems of Strong Differential Sandwich Results for Analytic Functions Associated with Wanas Fractional Integral Operator. Journal of Al-Qadisiyah for Computer Science and Mathematics, 15(4), pp math. 30–45. https://doi.org/10.29304/jqcsm.2023.15.41360

Issue

Section

Math Articles