Some Characteristics Properties for Linear Operator on Class of Multivalent Analytic Functions Defined by Differential Subordination
DOI:
https://doi.org/10.29304/jqcsm.2024.16.31663Keywords:
Multivalent function, Hadamard product, Convex functions, Differential subordination, Linear operatorAbstract
The purpose of this paper is to consider a linear operator and define a certain class of analytic and multivalent functions in the open unit disk associated with differential subordination. Also, we discuss some geometric properties for this class.
Downloads
References
M. K. Aouf, R. M. El-Ashwah and A. M. Abd-Eltawab, Some inclusion relationships of certain subclasses of p-valent functions associated with a family of integral operators, ISRN Math, Anal, 8(2013)384170.
S. D. Bernardi, Convex and starlike univalent functions, Trans, Am, Math, Soc, 135(1969)429-446.
B. C. Carlson and D.B. Shffer Starlike and prestarlike hypergeometric function, SIAM J. Math. Anal., 15(1984)737-745.
J. H. Choi, M. Saigo and H. M. Srivastava, Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl., 276(2002)432-445.
Y. Dinggong and J. L. Liu, On a class of analytic functions involving Ruscheweyh derivatives, Bull. Korean Mwth. Soc., 39(1)(2002),123-131.
R. M, El-Ashwah and M. E. Drbuk, Subordination properties of p-valent functions defined by linear operators, Br. J. Math. Comput. Sci., 4(2014), 3000-3013.
I. B. Jung, Y. C. Kim and H.M. Srivastava, The Hardy space of analytic functions associated with certain parameter families of integral operators,J,Math,Anal,Appl,176(1993)138-147.
A. A. Kilbas, H. M. Srivastva, and J. J. Trujillo, Theory and Application of Fractionl Differential Equations; North-Holland Mathematical Studies; Elsevier (North-Holland)Science Publishers: Amsterdam, The Netherlands; London, UK; New York, NY,USA, 204, 2006.
V. Kiryakova, Generalized Franctionl Calculus and Applications; Pitman Research Notes in Mathematics; Longman Scientific and Techical: Harlow, UK, 301, 1993.
J. L. Liu, Certain convolution properties of multivalent analytic functions associated with a linear operator, General Mathematics, 17(2)(2009), 41-52.
R. J. Libera, Some classes of regular univalent functions, Proc. Am. Math. Soc., 16(1965), 755-758.
J. L. Liu and S. Owa, Properties of certain integral operator, Int. J. Math. Sci., 3(2004), 45-51.
S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J., 28(1981), 157-171.
K. I. Noor, On new classes of integral operators, J. Nat. Geom., 16(1999), 71-80.
J. K Prajapat and R. K. Raina, Some applications of differential subordination for a general class of multivalently analytic functions involving a convolution structure, Math. J. Okayama Univ., 52(2010), 147-158.
R. K. Raina and P, Sharma Subordination preserving properties associated with a class of operators, Matematiche, 68(2013), 217-228.
S. Ruscheweyh, New criteria for univalent functions, Proc. Am. Math. Soc., 49(1975), 109-115.
S. Ruscheweyh, Convolutions in Geometric Function Theory, Les Presses de 1'Université de Montréal, Montréal, 1982.
H. M. Srivastava, An introductory overview of fractional –calculus operators based upon the Fox-Wright and related higher transcendental function, J. Adv. Eng. Comput., 5(2021), 135-166.
H. Saitoh, S. Owa, T. Sekine, M. Nunokawa and R. Yamakawa, An applicationof a certain integral operator, Appl. Math. Lett., 5(1992), 21-24.
Y. Yang, Y. Tao and J. L. Liu, Differential subordinations for certain meromorphically multivalent functions defined by Dziok-Srivastava operator, Abstract and Applied Analysis, 2011(2011), Article ID 726518, 1-9.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Zainab Swayeh Ghali, Abbas Kareem Wanas
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.