Applications of Gegenbauer Polynomials for Two Families of Bi-univalent Functions Associating λ-Pseudo-Starlike and Convex Functions with Sakaguchi Type Functions

Authors

  • Bedaa Alawi Abd Department of Mathematics, College of Science, University of Al-Qadisiyah,Iraq
  • Abbas Kareem Wanas Department of Mathematics, College of Science, University of Al-Qadisiyah,Iraq

DOI:

https://doi.org/10.29304/jqcsm.2024.16.11443

Keywords:

Bi-univalent function, Holomorphic function, , function λ-pseudo, Estimation of coefficients, polynomials Gegenbauer, Fekete-Szeg(o ) ̈ problem

Abstract

In the present article, we introduce two families  and  of holomorphic and bi-univalent functions associating -pseudo-starlike and convex functions with Sakaguchi type functions defined by Gegenbauer polynomials. We derive the initial Maclaurin coefficients estimates and determinate the Fekete-Szeg  problem of functions in these families.

Downloads

Download data is not yet available.

References

E. A. Adegani, S. Bulut and A. A. Zireh, Coefficient estimates for a subclass of analytic bi-univalent functions, Bull. Korean Math. Soc., 55(2) (2018), 405-413.

A. G. Alamoush, On subclass of analytic bi-close-to-convex functions, Int. J. Open Problems Complex Analysis, 13(2021), 10-18.

I. Al-Shbeil, A. K. Wanas, A. Benali and A. Catas, Coefficient bounds for a certain family of biunivalent functions defined by Gegenbauer polynomials, Journal of Mathematics, 2022 (2022), Art. ID 6946424, 1-7.

S. Altinkaya and S. Yalçin, On the Chebyshev polynomial coefficient problem of some subclasses of bi-univalent functions, Gulf Journal of Mathematics, 5(3) (2017), 34-40.

A. Amourah, A. Alamoush, and M. Al-Kaseasbeh, Gegenbauer polynomials and bi-univalent functions, Palestine Journal of Mathematics, 10(2) (2021), 625-632.

H. Bateman, Higher Transcendental Functions, McGraw-Hill, 1953.

K. O. Babalola,On λ- pseudostarlike functions, J.Class. Anal.,3(2)(2013),137-147.

S. Bulut and A. K. Wanas, Coefficient estimates for families of bi-univalent functions defined by Ruscheweyh derivative operator, Mathematica Moravica, 25(1)(2021), 71-80.

M. Caglar, E. Deniz, H. M. Srivastava, Second Hankel determinant for certain subclasses of bi-univalent functions. Turk. J. Math., 41(2017), 694-706.

E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Class. Anal., 2(2013), 49-60.

B. Doman, The Classical Orthogonal Polynomials, World Scientific, 2015.

P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.

S. S. Eker, Coefficient bounds for subclasses of m-fold symmetric bi-univalent functions, Turk. J. Math., 40(2016), 641-646.

M. Fekete and G. Szego ̈, Eine bemerkung uber ungerade schlichte funktionen, J. Lond. Math. Soc., 2(1933), 85-89.

B. A. Frasin, Coefficient inequalities for certain classes of Sakaguchi type functions, Int. J. Nonlinear Sci., 10 (2010), 206-211.

H. O. Guney, G. Murugusundaramoorthy and J. Sokol, Subclasses of bi-univalent functions related to shell-like curves connected with Fibonacci numbers, Acta Univ. Sapient. Math., 10(2018), 70-84.

K. Kiepiela, I. Naraniecka, and J. Szynal, The Gegenbauer polynomials and typically real functions, Journal of Computational and Applied Mathematics, 153(1-2) (2003), 273-28.

A. Legendre, Recherches sur laattraction des sphéroides homogénes, vol. 10, Mémoires présentes par divers savants a laAcadémie des Sciences de laInstitut de France, Paris, 1785.

N. Magesh and S. Bulut, Chebyshev polynomial coefficient estimates for a class of analytic bi-univalent functions related to pseudo-starlike functions, Afr. Mat., 29(1-2) (2018), 203-209.

N. Magesh and J. Yamini, Fekete- Szego ̈ problem and second Hankel determinant for a class of bi-univalent functions, Tbilisi Math. J., 11(1) (2018), 141-157.

S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics Vol. 225, Marcel Dekker Inc., New York and Basel, 2000.

A. O. Pall-Szabo and A. K. Wanas, Coefficient estimates for some new classes of bi- Bazilevic functions of Ma-Minda type involving the Salagean integro-differential operator, Quaestiones Mathematicae, 44 (4) (2021), 495-502.

M. Reimer, Multivariate polynomial approximation, Birkhäuser, 2012.

K. Sakaguchi,On a certain univalent mapping, J.Math.Soc.Japan, 11(1)(1959), 72-75.

S. Owa, T. Sekine and R. Yamakawa, On Sakaguchi type functions, Appl.Math. Comput., 187(2007), 356-361.

T. G. Shaba and A. B. Patil, Coefficient estimates for certain subclasses of m-fold symmetric bi-univalent functions associated with pseudo-starlike functions, Earthline Journal of Mathematical Sciences, 6(2) (2021), 2581-8147.

T. G. Shaba, On some subclasses of bi-pseudo-starlike functions defined by Salagean differential operator, Asia Pac. J. Math., 8(6) (2021), 1-11.

H. M. Srivastava, Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A: Sci., 44 (2020), 327-344.

H. M. Srivastava, S. Altinkaya and S. Yalçin, Certain subclasses of bi-univalent functions associated with the Horadam polynomials, Iran. J. Sci. Technol. Trans. A: Sci., 43 (2019), 1873-1879.

H. M. Srivastava, S. S. Eker, S. G. Hamidi and J. M. Jahangiri, Faber polynomial coefficient estimates for bi-univalent functions defined by the Tremblay fractional derivative operator, Bull. Iran. Math. Soc., 44 (2018), 149-157.

H. M. Srivastava, S. Hussain, A. Raziq and M. Raza, The Fekete-Szego ̈ functional for a subclass of analytic functions associated with quasi-subordination, Carpathian J. Math., 34 (2018), 103-113.

H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010), 1188–1192.

H. M. Srivastava and A. K. Wanas, Applications of the Horadam polynomials involving λ-pseudo-starlike bi-univalent functions associated with a certain convolution operator, Filomat, 35 (2021), 4645-4655.

A. K. Wanas , Applications of Chebyshev polynomials on λ-pseudo bi-starlike and λ-pseudo bi-convex functions with respect to symmetrical points, TWMS Journal of Applied and Engineering Mathematics, 10(3) (2020), 568-573.

A. K. Wanas, Coefficient estimates of bi-starlike and bi-convex functions with respect to symmetrical points associated with the second kind Chebyshev polynomials, Earthline Journal of Mathematical Sciences, 3 (2020), 191-198.

A. K. Wanas and L.-I. Cotirla, New applications of Gegenbauer polynomials on a new family of bi-Bazilevic functions governed by the q-Srivastava-Attiya operator, Mathematics, 10(2022), Art. ID 1309, 1-9.

A. K. Wanas and S. R. Swamy, Applications of the second kind Chebyshev polynomials of bi-starlike and bi-convex λ-pseudo functions associated with Sakaguchi type functions, Earthline Journal of Mathematical Sciences,13(2) (2023) ,497-507.

Downloads

Published

2024-03-30

How to Cite

Alawi Abd , B., & Kareem Wanas , A. (2024). Applications of Gegenbauer Polynomials for Two Families of Bi-univalent Functions Associating λ-Pseudo-Starlike and Convex Functions with Sakaguchi Type Functions. Journal of Al-Qadisiyah for Computer Science and Mathematics, 16(1), Math. 1–15. https://doi.org/10.29304/jqcsm.2024.16.11443

Issue

Section

Math Articles