New Families of Bi-Univalent Functions Associated with the Quotient of Analytic Functions

Authors

  • Noor Yasser Gubair Department of Mathematics, College of Science, University of Al-Qadisiyah, Iraq
  • Abbas Kareem Wanas Department of Mathematics, College of Science, University of Al-Qadisiyah, Iraq

DOI:

https://doi.org/10.29304/jqcsm.2025.17.12008

Keywords:

Holomorphic functions, Univalent functions, Bi-univalent functions, Starlike functions, convex functions, Coefficient bounds

Abstract

The purpose of this paper is to obtain the upper bounds for the first two Taylor-Maclaurin  and  for a new families  and  of holomorphic and bi-univalent functions defined by the ratio of analytic representations of convex and starlike functions in the open unit disk .

Downloads

Download data is not yet available.

References

E. A. Adegani, S. Bulut and A. A. Zireh, Coefficient estimates for a subclass of analytic bi-univalent functions, Bull. Korean Math. Soc., 55(2) (2018), 405-413.

I. Al-Shbeil, A. K. Wanas, A. Saliu and A. Catas, Applications of beta negative binomial distribution and Laguerre polynomials on Ozaki bi-close-to-convex functions, Axioms, 11(2022), Art. ID 451, 1-7.

K. O. Babalola, On λ-pseudo-starlike functions, J. Class. Anal., 3(2) (2013), 137-147.

S. Z. H. Bukhari, A. K. Wanas, M. Abdalla and S. Zafar, Region of variablity for Bazilevič functions, AIMS Mathematics, 8 (2023), 25511-25527. https://doi.org/10.3934/math.20231302

L.-I. Cotîrlă and A. K. Wanas, Applications of Laguerre polynomials for Bazilevič and λ-pseudo-starlike bi-univalent functions associated with Sakaguchi-type functions, Symmetry, 15(2023), Art. ID 406, 1-8.

P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.

J. O. Hamzat, M. O. Oluwayemi, A. A. Lupas and A. K. Wanas, Bi-univalent problems involving generalized multiplier transform with respect to symmetric and conjugate points, Fractal Fract., 6(2022), Art. ID 483, 1-11.

S. B. Joshi, S. S. Joshi and H. Pawar, On some subclasses of bi-univalent functions associated with pseudo-starlike functions, J. Egyptian Math. Soc., 24 (2016), 522-525.

N. Magesh and S. Bulut, Chebyshev polynomial coefficient estimates for a class of analytic bi-univalent functions related to pseudo-starlike functions, Afr. Mat., 29(1-2) (2018), 203-209.

S. Prema and B. S. Keerthi, Coefficient bounds for certain subclasses of analytic function, J. Math. Anal., 4(1) (2013), 22-27.

[x11] Q. A. Shakir, A. S. Tayyah, D. Breaz, L.-I. Cotîrlă, E. Rapeanu, and F. M. Sakar, "Upper bounds of the third Hankel determinant for bi-univalent functions in crescent-shaped domains," Symmetry, vol. 16, p. 1281, 2024.

[x12] Q. A. Shakir and W. G. Atshan, "On third Hankel determinant for certain subclass of bi-univalent functions," Symmetry, vol. 16, p. 239, 2024.

R. Singh, On Bazilevič functions, Proc. Amer. Math. Soc., 38(2)(1973), 261-271.

H. M. Srivastava, Ş. Altınkaya and S. Yalçin, Certain subclasses of bi-univalent functions associated with the Horadam polynomials, Iran. J. Sci. Technol. Trans. A Sci., 43(2019), 1873-1879.

H. M. Srivastava and D. Bansal, Coefficient estimates for a subclass of analytic and bi- univalent functions, J. Egyptian Math. Soc., 23(2015), 242-246.

H. M. Srivastava, S. Bulut, M. Caglar and N. Yagmur, coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat, 27(5) (2013), 831-842.

H. M. Srivastava, S. S. Eker and R. M. Ali, coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat, 29(2015), 1839-1845.

H. M. Srivastava, S. S. Eker, S. G. Hamidi and J. M. Jahangiri, Faber polynomial coefficient estimates for bi-univalent functions defined by the Tremblay fractional derivative operator, Bull. Iranian Math. Soc., 44(1) (2018), 149-157.

H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for some general sub- classes of analytic and bi-univalent functions, Africa Math., 28(2017), 693-706.

H. M. Srivastava A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23(2010), 1188-1192.

H. M. Srivastava and A. K. Wanas, Applications of the Horadam polynomials involving λ- pseudo-starlike bi-univalent functions associated with a certain convolution operator, Filo- mat, 35(2021), 4645-4655.

H. M. Srivastava and A. K. Wanas and H. O ̈. Gu ̈ney, New families of bi-univalent functions associated with the Bazilevic ̌ functions and the γ-Pseudo-starlike functions, Iran. J. Sci. Technol. Trans. A: Sci., 45 (2021), 1799-1804.

A. K. Wanas, Coefficient Estimates for Bazilevič Functions of Bi-Prestarlike Functions, Miskolc Mathematical Notes, 21(2) (2020), 1031-1040

A. K. Wanas and L.-I. Coti ̂rla ̌, Initial corfficient estimates and Fekete-Szego ̈ inequalities for new families of bi-univalent functions governed by (p-q)- Wanas operator, Symmetry, 3(2021), Art. ID 2118, 1-17.

A. K. Wanas and A. A. Lupaş, Applications of Laguerre polynomials on a new family of bi-prestarlike functions, Symmetry, 14(2022), Art. ID 645, 1-10.

A. K. Wanas and A. A. Lupaş, Applications of Horadam polynomials on Bazilevič bi-univalent functions satisfying subordinate conditions, J. Phys.: Conf. Ser., 1294 (2019), 1-6.

A. K. Wanas, G. S. Sa ̌la ̌gean and P.-S. A. Orsolya, Coefficient bounds and Fekete- Szego ̈ inequality for a certain family of holomorphic and bi-univalent functions defined by (M,N)-Lucas polynomials, Filomat, 37(4) (2023), 1037-1044.

P. Zaprawa, On the Fekete-Szegö problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin, 21(2014), 169-178.

Downloads

Published

2025-03-30

How to Cite

Yasser Gubair, N., & Kareem Wanas, A. (2025). New Families of Bi-Univalent Functions Associated with the Quotient of Analytic Functions. Journal of Al-Qadisiyah for Computer Science and Mathematics, 17(1), Math 113–120. https://doi.org/10.29304/jqcsm.2025.17.12008

Issue

Section

Math Articles